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Abstract

A generalization of Sullivan inequality on the ratio of the probabi-

lity of a linear code to that of any of its cosets is proved. Starting from

this inequality, a sufficient condition for successful decoding of linear

codes by a probabilistic method is derived. A probabilistic decoding

algorithm for “low–density parity–check codes” is also analyzed. The

results obtained allow one to estimate experimentally the probability

of successful decoding using these probabilistic algorithms.
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Introduction

In this paper we shall prove a generalization of Sullivan [11] inequality on

the ratio of the probability of a subgroup (linear subspace, linear code) of

the additive group of the field GF(2n) (linear space over the field GF(2)) to

that of any of its cosets. The generalized inequality gives a lower bound on

the ratio of the probability of a subgroup of the additive group of GF(qn) (q

is a power of a prime) to that of an arbitrary coset of it, for a more general

probability distribution on the set GF(qn).

We shall perform an analysis of a probabilistic decoding method of linear

codes based on the special case of this inequality for q = 2. The algorithm

can be described as follows (see [4, pp. 152], [1], [3], [8, Algorithm B]). For

a given binary linear (n, k) code one has to define a mapping (depending

on the received message) of a vector of a priori error probabilities into a

vector of a posteriori ones, using a different set of parity checks for each bit

of the received message. This mapping is first applied to the n–dimensional

vector whose coordinates are equal to the error probabilities of a DMC (dis-

crete memoryless channel), then to the result of the mapping, and so on.

After a number of iterations, the obtained vector is used to correct errors in

the received message. A sufficient condition is given for convergence of the

vector sequence of “a posteriori error probabilities” to the error vector, and

equivalently for successful decoding.

This method of analysis enables one to estimate experimentally the prob-

ability of successful decoding for any given linear code and for any chosen

family of parity–check sets. By the example of a linear (512, 100) code we

shall illustrate the dependence of the successful decoding probability on the

channel noise level. As it is known, such probabilistic algorithms are very
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efficient compared with other general decoding algorithms for linear codes

(see [6], [8]).

The second algorithm that we shall consider is similar to Gallager prob-

abilistic decoding method of “low–density parity–check codes” [6], and it

is applicable only to these codes. An analysis of a probabilistic decoding

method (of these codes) can be found in [6], where an average error proba-

bility is treated.

1 A generalization of an inequality on the ra-

tio of the probability of a linear code to

that of any of its cosets

Some necessary notation is introduced, and a generalization of Sullivan in-

equality (Theorem 1) is given. The proof of this inequality, similar to the

proof of Sullivan inequality in [11], is given in the Appendix.

Let q be a power of a prime, and let Vn denote the additive group of the

field GF(qn). The elements of the set Vn are the vectors v = [v1 v2 . . . vn]T ,

where vi ∈ V1 for 1 ≤ i ≤ n, and T denotes transposition. A probability

distribution P (·) on the set Vn is defined, so that for any A ⊂ Vn we have

P (A) =
∑

v∈A

n∏

i=1

pi,vi . (1)

Here pi,j, 1 ≤ i ≤ n, j ∈ V1, are real, non-negative numbers, satisfying the

conditions



pi,j = pi, j ∈ V1, j 6= 0

pi,0 = 1− (q − 1)pi
, 0 ≤ pi < 1/q, 1 ≤ i ≤ n. (2)
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Let G be an arbitrary subgroup of order qk of the group Vn, 1 ≤ k < n

(q–ary linear code), and let K be an arbitrary coset of G. In this paper a

lower bound on the ratio P (G)/P (K) is given. This problem is proposed

and solved in [11] for q = 2 and 0 < pi = p < 1/2, 1 ≤ i ≤ n. Then the

following inequality holds

P (G)

P (K)
≥ 1 + (1− 2p)k+1

1− (1− 2p)k+1
> 1. (3)

Another proof of this inequality is given in [10], and some of its applications

are listed.

Let j = (j1, j2, . . . , jn) be an arbitrary permutation of the set of indices

{1, 2, . . . , n}, k an integer, 0 ≤ k < n, and u ∈ V1. Denote by Cj,k,u the

following subset of Vn

Cj,k,u =
{
v ∈ Vn | vj1 + · · ·+ vjk+1

= u, vjk+2
= · · · = vjn = 0

}
. (4)

The set Cj,k,0 is a subgroup of order qk, and the sets Cj,k,u, u 6= 0, are the

cosets of this subgroup. It is easily seen that for q = 2 the lower bound on

the ratio P (G)/P (K) in (3) is equal to the ratio P (Cj,k,0)/P (Cj,k,1).

Consider the ratio P (Cj,k,0)/P (Cj,k,u), u ∈ V1, u 6= 0 in a more general

case, where q is an arbitrary power of a prime. Then we have

P (Cj,k,0)

P (Cj,k,u)
=

1 + (q − 1)
∏k+1
i=1 (1− qpji)

1−∏k+1
i=1 (1− qpji)

= 1− q +
q

1−∏k+1
i=1 (1− qpji)

.

Similarity of this expression to the lower bound in (3) suggests to introduce

the function Fk(p) by

Fk(p) =
1 + (q − 1)

∏k+1
i=1 (1− qpli)

1−∏k+1
i=1 (1− qpli)

, (5)
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where the permutation l is such that

pl1 ≥ pl2 ≥ · · · ≥ pln . (6)

Then for any k, 1 ≤ k < n, we have the inequality

P (Cj,k,0)/P (Cj,k,u) ≥ P (Cl,k,0)/P (Cl,k,u) = Fk(p).

The expression of Fk(p) depends on the k + 1 largest coordinates of the

vector p = (p1, p2, . . . , pn). For any k, 0 ≤ k < n , the function Fk(p) has

the following properties (which can easily be verified).

Property 1. Fk(p) > 1.

Property 2. Fk+1(p) ≤ Fk(p), k < n− 1.

Property 3. Fk(p) is a non-increasing function of every coordinate of

the vector p.

Concerning the lower bound on the probability ratio P (Cj,k,0)/P (Cj,k,u),

u 6= 0, the question arises, whether it is equal to the lower bound on the

ratio P (G)/P (K) when G is an arbitrary subgroup of order qk of the group

Vn, K an arbitrary coset of it, and the probability distribution P (·) satisfies

constraint (2). An affirmative answer is given by the following theorem, a

generalization of inequality (3) in [11].

Theorem 1 Suppose that the probability distribution over Vn is given by (1),

where the parameters pi,j, 1 ≤ i ≤ n, j ∈ V1, satisfy constraint (2). If G is

an arbitrary subgroup of order qk, 0 ≤ k < n, of Vn and if K is an arbitrary

proper coset of G, then the following inequality holds

P (G)/P (K) ≥ Fk(p) > 1, (7)
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where the function Fk(p) is defined by (5). The ratio P (G)/P (K) reaches

the lower bound in this inequality if G = Cl,k,0 and K = Cl,k,u, u 6= 0,

where l is a permutation of indices satisfying (6). 2

The proof is carried out by induction over the order of G, and for fixed

order of G by induction over the coset leader weight of K (see the Appendix).

Let us briefly consider the case where the probability distribution P (·)
on Vn satisfies the more general constraint





∑q−1
j=0 pi,j = 1

pi,0 ≥ pi,j, j ∈ V1, j 6= 0
, 1 ≤ i ≤ n. (8)

Finding a lower bound on the ratio P (G)/P (K) is much harder in this case.

Even more, for a fixed u ∈ V1, u 6= 0, if G is a subgroup Cj,k,0 of type (4), and

if K is its corresponding coset Cj,k,u, then it is hard to find the permutation

j of indices for which P (G)/P (K) reaches its lowest value. This fact can be

illustrated by the following example.

Example 1 Let q = 3, n = 4, k = 1, and let the parameters p1,0, p1,1, p1,2;

p2,0, . . . , p4,2 have the following values 0.6, 0.3, 0.1; 0.6, 0.1, 0.3; 0.6, 0.1, 0.3;

0.7, 0.2, 0.1, satisfying (8). The probability ratio

R(j1, j2) = P (Cj,k,0)/P (Cj,k,1)

=
pj1,0pj2,0 + pj1,1pj2,2 + pj1,2pj2,1
pj1,0pj2,1 + pj1,1pj2,0 + pj1,2pj2,2

depends only on the first two coordinates of the vector j = (j1, j2, j3, j4),

which is a permutation of the set {1, 2, 3, 4}. It is easily seen that R(1, 3) =

46/27 > 47/34 = R(1, 4) and R(2, 3) = 2 < 49/22 = R(2, 4). Thus, whether

R(j1, 3) is less, or greater than R(j1, 4), depends on the value of j1. In other

words, the best value of j2 depends on that chosen for j1. 2
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It would be interesting to prove or to find a counter example for (7) under

the constraint (8), where

pi = max{pi,j | 1 ≤ j < q} < 1/q, 1 ≤ i ≤ n.

If (7) were true under these assumptions, then it might be possible to analyze

Algorithm P1 (see Section 2) in the non–binary case.

2 An analysis of two probabilistic decoding

algorithms for binary linear codes

In this section a method is given for the analysis of the probabilistic decoding

algorithm for linear codes described in the Introduction (Algorithm P1, see

below). This method is based on a sufficient condition of convergence of

an iteratively computed sequence of error–vector probability distributions

(Theorem 2). The proof of Theorem 2 is carried out using a special case of

Theorem 1 for q = 2, which is a generalization of Sullivan inequality [11].

This approach enables one to estimate experimentally the dependence of

the successful decoding probability on the DMC noise level, for an arbitrary

binary code and for an arbitrary family of parity–check sets (the family which

allows effective computation of a posteriori error probabilities). The method

is illustrated by two examples. Another probabilistic decoding algorithm,

applicable to “low–density parity–check codes” [6], is also analyzed.

Let C be a binary linear (n, k) code with a parity–check matrix H. The

effect of a DMC with error probabilities p1, p2, . . . , pn can be modeled by

an n–dimensional binary random variable E defined over Vn = {0, 1}n, with
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independent coordinates and with probability distribution

Pp{E = e} =
n∏

i=1

peii (1− pi)1−ei , e ∈ Vn. (9)

The real vector p = (p1, p2, . . . , pn) ∈ [0, 1]n with the coordinates pi =

Pp{Ei = 1}, 1 ≤ i ≤ n, determining the probability distribution of E,

will be referred to as the error probability vector of the DMC (or: the error

probability vector of the random variable E). Applying the codeword x ∈ C
to the input of the DMC, we get the random variable Y = E + x, where

addition is operation in GF(2n).

We shall now describe more precisely the first of the two probabilistic de-

coding algorithms to be discussed, which will be referred to as Algorithm P1.

Suppose that for each codeword coordinate we have chosen a set of parity

checks from the dual code. The vectors corresponding to the chosen parity

checks have to be linearly independent in every set, see for example [2]. For

all i, 1 ≤ i ≤ n, define H(i) as the matrix whose rows are equal to the dual

code codewords, corresponding to the chosen i–th set of parity checks. Let

y, the received message, be a realization of the random variable Y. The

function Fy : [0, 1]n → [0, 1]n is defined as the mapping transforming the

vector p of the a priori error probabilities into the vector P of a posteriori

error probabilities, i.e.

Pi = Pp

(
{Ei = 1} | {H(i)E = H(i)y}

)

=
Pp{H(i)E = H(i)y, Ei = 1}

Pp{H(i)E = H(i)y} , 1 ≤ i ≤ n. (10)

Define the vector sequence {P(j)}j≥0 by the DMC error probability vector

p = P(0), and by the recurrent relation

P(j+1) = Fy(P(j)), j ≥ 0. (11)
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To decode a received message by Algorithm P1 means to estimate the

error vector by the vector ē, obtained from P(d) (for some fixed integer d) by

rounding its coordinates to one binary digit, i.e.

ēi =





0, P
(d)
i ≤ 1/2

1, P
(d)
i > 1/2

. (12)

If the vector ē + y is equal to a codeword x that could have been applied to

the DMC input, then decoding is successful, otherwise it is not.

If p incorporates the reliability information related to the received mes-

sage y, obtained by hard–decision, then Algorithm P1 is in fact a soft–

decision decoding algorithm. A more sophisticated version of Algorithm P1

includes some information set decoding algorithm [4, pp. 102–131] as a second

phase, which means that the result of decoding is the codeword x̄ agreeing

with ē+y on the chosen information set. In this paper only the basic version

of the algorithm is considered.

For d = 1 Algorithm P1 is in fact a known symbol–by–symbol decoding

algorithm, see for example [7]. Repeated calculation of the a posteriori error

probabilities is heuristically motivated, and enables to incorporate informa-

tion from a large part of the received message into the decision on every error

bit, see [6]. It is known that probabilistic decoding methods have low numer-

ical complexity when orthogonal parity–check sets are used (parity checks

with exactly one common member).

If the vector sequence {P(j)}j≥0 converges, then for large enough d0 > 0

the vector ē, obtained by rounding the coordinates of P(d) according to (12),

does not depend on d for d > d0. The following theorem gives a sufficient

condition for convergence of this vector sequence.

Theorem 2 Suppose C is a linear (n, k) code with parity–check matrix H.
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For 1 ≤ i ≤ n let the rows of matrix H(i) be some linearly independent

vectors from the dual code. Let y ∈ Vn be the received message, and let

the vector sequence {P(j)}j≥0 be defined by the DMC error probability vector

P(0), and by the recurrent relation (11). If for some x ∈ C and for some

d > 0 the coordinates of P(d) satisfy the condition

P
(d)
i




< 1/2, yi = xi

> 1/2, yi 6= xi
, 1 ≤ i ≤ n, (13)

then

lim
j→∞

P
(j)
i





= 0, yi = xi

= 1, yi 6= xi
, 1 ≤ i ≤ n. 2

The idea of the proof (see the Appendix) is to reduce the problem by an

appropriate substitution to the case when the received message equals the

all–zero vector. Then, using Theorem 1, it is proved that the coordinates

of the transformed error probability vectors uniformly tend to zero (at least

exponentially).

Suppose that x in the statement of Theorem 2 is the transmitted code-

word (this is often the case for some d > 0 when the noise level is low). If

conditions of the theorem are satisfied then the limit of {P(j)}j≥0 is the error

vector e = x + y. The converse claim obviously holds: if limj→+∞P(j) = e,

then there exists d > 0, such that (13) is satisfied. Therefore, decoding by Al-

gorithm P1 is successful for large enough d if, and only if, limj→+∞P(j) = e.

During decoding by Algorithm P1 computation of vectors from the se-

quence {P(s)}1≤s≤d can be interrupted for some s < d if (13) is satisfied with

d replaced by s.

Let us now discuss the significance of Theorem 2. For d = 1 Theorem 2

can be stated as follows: if it is possible to decode a received message y
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on a symbol–by–symbol basis using the parity–check matrices H(i), 1 ≤
i ≤ n, then applying Algorithm P1 to the same message y also leads to

successful decoding. The importance of Theorem 2 arises from the fact that

Algorithm P1 leads to successful decoding also if (13) is satisfied for an

arbitrary d ≥ 1.

Exact calculation of the successful decoding probability (using Algorithm P1)

is practically impossible, except for simple, useless codes. But it is possible

to estimate this probability experimentally. Let us first consider the case of

a BSC, where p1 = p2 = · · · = pn = p < 1/2. Let x denote the codeword

applied to the input of the BSC. For d ≥ 1 let Ad denote the set of error

vectors e ∈ Vn with the following property: if Algorithm P1 is applied to

y = x + e, then P(d) satisfies (13). From the proof of Theorem 2 we have

A1 ⊆ A2 ⊆ · · · . Define the random variable Ud as the indicator of the event

E ∈ Ad, i.e.

Ud =





1, E ∈ Ad
0, E /∈ Ad

, d ≥ 1. (14)

The quantity

αd = P {Ud = 1} = P{Ed ∈ Ad}, d ≥ 1, (15)

is the probability that P(d) satisfies (13), i.e. the probability of successful

decoding using P(d). The probability αd can be estimated statistically in the

usual way. If the independent random variables E(s), 1 ≤ s ≤ N, N > 1, are

distributed as E in (9), then the corresponding random variables U
(s)
d have

the same probability distribution. The random variable NŪd, where Ūd =

1
N

∑N
s=1 U

(s)
d , is binomially distributed with parameters αd and N . Therefore,

the probability αd can be estimated as αd ' ūd, where ūd is the realization of
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the random variable Ūd. More precisely, the quantity αd lies in the interval

[ūd − 2σd, ūd + 2σd], with a probability of approximately 95%, where σd '√
ūd(1− ūd)/N. Note that the outcome of the experiment does not depend

on the choice of the codeword x, and so without loss of generality it can be

taken x = 0. The described method is illustrated by the following example.

Example 2 Let C be a linear (512, 100) code (the parameters n and k have

similar values as in an example in [6]), whose codewords are vectors x ∈ V512

satisfying the following parity checks

xi + xi+37 + xi+100 = 0, 1 ≤ i ≤ 412. (16)

This is a recurrence relation with the characteristic polynomial f(z) = 1 +

z37 + z100. The sequence x1, x2, . . . also satisfies recurrence relation with

the characteristic polynomial f(z)g(z) for an arbitrary binary polynomial

g(z). In particular, for g(z) = f(z) and g(z) = (f(z))3, we get characteristic

polynomials (f(z))2 = f(z2) and (f(z))4 = f(z4), and so codewords of C

also satisfy the parity checks

xi + xi+74 + xi+200 = 0, 1 ≤ i ≤ 312, (17)

and

xi + xi+148 + xi+400 = 0, 1 ≤ i ≤ 112. (18)

Codewords of C are easily produced using an appropriate linear feedback

shift register. For any i, 1 ≤ i ≤ 512, the parity–check matrix H(i) consists

of all parity checks of the form (16), (17) and (18), containing the coordinate

xi of the codeword (this construction is used in [8]). It can easily be verified

that the parity–check sets corresponding to these matrices are linearly inde-

pendent and orthogonal (i.e. that all columns of the matrix H(i), excluding

the i–th, contain exactly one 1).
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Suppose that we fix a codeword x ∈ C, the BSC transition probability p

and the number d of iterations in Algorithm P1. The realizations e(s) ∈ V512,

of random variables E(s), 1 ≤ s ≤ N = 100, can be obtained using a random

number generator. Algorithm P1 is applied to every received message y(s) =

x + e(s), 1 ≤ s ≤ N, and the number of successful decodings is counted.

The dependence of the estimated probability of successful decoding on the

error probability p is depicted in Figure 1 for p = 8/256(1/256)50/256 and

d = 1, 2, 3, 5, 7, 10. One can see that the probability of successful decoding

is close to one for p < 1/16 = 0.0625 and that this probability decreases

rapidly for larger values of p. 2

Consider now a DMC related as follows to a channel with binary antipodal

signals and white Gaussian noise, with optimum demodulation (see [2] for

example). For the input bit x ∈ {0, 1}, denote by Ξ the random variable

equal to the output of demodulator. Let (−1)xS be its output in the absence

of noise, and let σ2 be its variance when noise is present. The probability

that Ξ lies in the interval (ξ, ξ + dξ) is

(2πσ2)−1/2 exp
(
−(ξ − (−1)xS)2/2σ2

)
dξ. (19)

If ξ is the demodulator output, then the received bit y is obtained by hard

decision

y =





0, ξ ≥ 0

1, ξ < 0
, (20)

and the probability of erroneous decision is

(1 + exp(4γ|ξ|/S))−1 . (21)

Here γ = S2/(2σ2) denotes the signal–to–noise ratio (SNR). Repeating this

procedure for each codeword bit xi and the demodulator output ξi, 1 ≤ i ≤ n,
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we get the received message y and the DMC error probability vector p. The

average error probability for such a DMC is p̄ = Q(S/σ) = Q(
√

2γ), where

Q(t) =
1√
2π

∫ +∞

t
exp(−z2/2) dz.

As in the case of a BSC, the probability of successful decoding can be esti-

mated statistically. Here the elementary events space is [0, 1]n× Vn, because

p = P(0) is a realization of a random vector, determining the conditional

probability distribution of the error vector E. For fixed d ≥ 1 denote by

Ad the set of pairs (P(0), e) with the following property: if Algorithm P1

is applied to y = x + e, then P(d) satisfies (13). Like before we can define

random variable Ud (14) and the probability αd (15). This probability is then

estimated by the average of the realizations of N ≥ 1 independent random

variables, with the same probability distribution as that of Ud.

Example 3 Let C be the linear (512, 100) code of Example 2. For fixed

x ∈ C, γ and d we generate random normal deviates ξi, 1 ≤ i ≤ n, according

to distribution (19), where x = xi and S = 1. These deviates can be treated

as outputs from a Gaussian channel, when x is applied to its input. By hard

decision (20) we get the received message y (the output of the related DMC).

The DMC error probability vector p = P(0) is obtained using (21) with ξi

substituted for ξ, 1 ≤ i ≤ n. The realization of the error vector is obviously

e = x + y. Algorithm P1 is then applied to y and P(0). Repeating this

procedure N = 100 times, we estimate the probability of successful decoding

by the quotient of the number of successful decodings and N. The results

of such an experiment for 10 log γ = −8(0.2)4 dB and d = 1, 2, 3, 5, 7, 10 are

displayed in Figure 2. It is seen that the probability of successful decoding is

close to one if 10 log γ ≥ −6 dB (for d = 10). The average error probability
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corresponding to this SNR is p̄ = Q(S/σ) = Q(
√

2γ) = 15.8%. Note that the

results for BSC (Figure 1) are similar to those in Figure 2, if SNR is replaced

by γ′ = 2γ and then transformed into the average error probability p̄ =

Q(
√

2γ′). This fact arises from the use of reliability information (contained

in the demodulator output) in the second case. 2

The coordinates of P(1) in Algorithm P1 have an obvious interpretation,

because they are the a posteriori error probabilities. But the coordinates of

other vectors P(2), . . . may not be considered as the actual a posteriori prob-

abilities inasmuch as they fail to take into account the dependence between

the error terms which results from the previous decoding step. However, they

are dealt with in the algorithm as such probabilities, which is both heuristi-

cally justified and practically successful. Still, this is in fact a “theoretical”

drawback of Algorithm P1. The probabilistic algorithm for decoding “low–

density parity–check codes” [6] (which will be referred to as Algorithm P2)

is more precise in this sense. Algorithm P2 is outlined here somewhat more

formally, and then it is analyzed similarly to Algorithm P1.

A code C is a binary (n, j, k) low–density parity–check code if every row

of its parity–check matrix H has exactly k ones, and if every column of H

has exactly j ones. Let R be the number of rows of H and let

Hu = {(r, i) | 1 ≤ i ≤ n, 1 ≤ r ≤ R, Hr,i = u} u ∈ {0, 1}. (22)

If (r, i) ∈ H1 then let H(i,r) (H(i)) denote the (j− 1)×n (j×n) matrix,

consisting of the rows of H with the index ρ satisfying Hρ,i = 1 and ρ 6= r

(Hρ,i = 1). We assume that the parity checks in H(i) for the i–th bit are

orthogonal, 1 ≤ i ≤ n.

Suppose y is an arbitrary received message. Let p be a DMC error
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probability vector and let b be an R×n matrix with elements in [0, 1], where

br,i = 0 for all (r, i) ∈ H0. For the fixed (r, i) ∈ H1 the vector g = g(H,b, r, i)

is defined by

gι =





pi, ι = i

bρ,ι, (ρ, ι) ∈ H1, Hρ,i = 1, ρ 6= r, ι 6= i

0, in other cases

. (23)

The coordinates of g corresponding to the non–zero columns of H(i,r) are

uniquely determined here, because the parity checks in H(i,r) of the bit i are

orthogonal. Let Br,i denote the conditional probability

Br,i = Pg

(
{Ei = 1} | {H(i,r)E = H(i,r)y}

)
(24)

Note that Br,i depends only on the coordinates of g corresponding to the

non–zero columns of H(i,r). If (r, i) ∈ H0 then let Br,i = 0. Denote by Φy,p

the mapping transforming b into B = [Br,i]R×n. Function Φ here plays the

same role as function F given by (10) in Algorithm P1.

Define the sequence of R×n matrices {B(j)}j≥0 by B(0), the matrix with

the elements B
(0)
r,i = Hr,ipi, and by the recurrent relation

B(s+1) = Φy,p(B(s)), s ≥ 0. (25)

For (r, i) ∈ H0 and s ≥ 0 we obviously have B
(s)
r,i = 0. In Algorithm P2 the

matrix B(d) is used to calculate the vector of a posteriori error probabilities

P̃
(d)

for some d > 0, where

P̃
(d)
i = Pg′

(
{Ei = 1} | {H(i)E = H(i)y}

)
.

Here the probability distribution vector g′ = g(H,b, i) is defined (see (23))
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by

g′ι =





pi, ι = i

B(d)
ρ,ι , (ρ, ι) ∈ H1, Hρ,i = 1, ι 6= i

0, in other cases

.

In the general case the quantities P̃
(d)
i are not the actual a posteriori error

probabilities. Still, when H is a parity–check matrix of a low–density parity–

check code and d is small enough, P̃
(d)
i are the a posteriori error probabilities,

see [5]. The last step of Algorithm P2 is to calculate the error vector estimate

ē using P̃
(d)

, like in Algorithm P1

ēi =





0, P̃
(d)
i ≤ 1/2

1, P̃
(d)
i > 1/2

, 1 ≤ i ≤ n. (26)

If the vector ē + y is equal to a codeword x that could have been applied to

the DMC input, then decoding is successful, otherwise it is not.

Define a continuous increasing function fj,k,u : [0, 1/2]→ [0, u] by

fj,k,u(t) =





0, t = 0(
1 + 1−u

u

(
1+(1−2t)k−1

1−(1−2t)k−1

)j−1
)−1

, 0 < t ≤ 1/2
,

where j, k ≥ 3, and 0 < u < 1. For t → 0+ we have fj,k,u(t) = O(tj−1), and

therefore the inequality fj,k,u(t) < t holds for small enough t > 0. Denote by

t0 = t0(j, k, u) the lowest upper bound on the values of t such that fj,k,u(t
′) <

t′ for all t′ < t. Obviously, t0(j, k, u) is equal to 1/2, or it is equal to the

smallest positive zero of the function fj,k,u(t)− t. In both cases we have the

inequality

fj,k,u(t) < t, 0 < t < t0(j, k, u). (27)

The value of t0(j, k, u) is a non–increasing function of u. Some values of

t0(j, k, u) are listed in the following table.
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(j, k) (3, 4) (3, 5) (3, 6) (4, 6)

u

0.90 0.012205 0.006900 0.004426 0.029258

0.95 0.005815 0.003279 0.002101 0.020208

0.99 0.001121 0.000631 0.000404 0.008918

We are now ready to formulate a sufficient condition for convergence of

the matrix sequence {B(s)}s≥0.

Theorem 3 Let C be an (n, j, k) low–density parity–check code. Let H(i,r)

denote the parity–check matrices used in Algorithm P2 and let the matrix

sequence {B(s)}s≥0 be defined by (25), where B(0) is the matrix with the

elements B
(0)
r,i = Hr,ipi, 1 ≤ i ≤ R, 1 ≤ i ≤ n. Denote

p = min{pj | 1 ≤ j ≤ n},

and let t0 = t0(j, k, 1− p). If y ∈ Vn is the received message and if for some

x ∈ C, d ≥ 0 for all (r, i) ∈ H1 (22) we have

B
(d)
r,i




< t0, yi = xi

> 1− t0, yi 6= xi
, (28)

then

lim
s→∞B

(s)
r,i





= 0, yi = xi

= 1, yi 6= xi
, (r, i) ∈ H1. 2 (29)

The proof is similar to that of Theorem 2 (see the Appendix).

Suppose x is the transmitted codeword. Then, as in Theorem 2, we have

lims→+∞B
(s)
r,i = ei = xi + yi for 1 ≤ i ≤ n if, and only if, for some d > 0

condition (28) is satisfied. If the assumptions of Theorem 3 are satisfied,
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then there exists d0 (not necessary equal to d), such that for all d′ > d0 the

vector ē from (26) (with d replaced by d′) is equal to e, i.e. decoding by

Algorithm P2 is successful. One can estimate statistically the probability

that the conditions of Theorem 3 are satisfied (the probability which is a

lower bound on the successful decoding probability when d is large enough)

similarly to the case of Algorithm P1.
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Appendix

Proof of Theorem 1

In the proof of Theorem 1 the following lemma, an immediate generalization

of Massey lemma in [11] (where the case q = 2 is treated), is used. The

element v from a coset K of subgroup G is a coset leader of K if it does not

contain any element of lower weight.

Lemma 1 Let G be an arbitrary subgroup of the additive group of the field

GF(qn), (q a power of a prime), and let K be a proper coset of G. Suppose

that the element v is a coset leader of K. Denote by G′ the subgroup obtained
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from G by replacing the coordinates of its elements, corresponding to non-

zero coordinates of v, by zeros. Then the order G′ is equal to the order of G.

2

Proof. Suppose that Lemma 1 is not true, i.e. that there exist elements

a,b ∈ G, a 6= b, such that replacing the coordinates corresponding to non-

zero coordinates of v by zero, we get the same element c ∈ G′. Then we

have a− b ∈ G, and all the coordinates of a− b, corresponding to the zero

coordinates of v, are equal to zero. Let β be an arbitrary non–zero coordinate

of a − b, and let γ be the corresponding (non–zero) coordinate of v. Then

the weight of the coset element −γβ−1(a− b) + v is smaller than that of v,

which contradicts the assumption. So, Lemma 1 is proved. 2

The subgroup G of the additive group of GF(qn) is a linear subspace of

the linear space Vn, i.e. a linear code. Let H be a parity–check matrix of the

code G, (matrix whose rows form a basis of its dual code). The set of indices

(i1, i2, . . . , ik) is an information set of the linear code G if the columns of H

with indices from this set are linearly independent. All the coordinates of a

codeword can be expressed as linear combinations of coordinates with indices

from the information set. Lemma 1 has the following obvious corollary.

Corollary 1 If vector v is a coset leader of a coset K of a linear code G,

then there exists an information set of G which is a subset of the set of indices

of the zeros in v. 2

We are now ready to start with the proof of Theorem 1. The statement

of the theorem will be proved by induction over k, 0 ≤ k < n, where qk is

the order of the subgroup G. For k = 0 we have G = {0} and K = {v},
where 0 denotes the vector whose all coordinates are equal to zero. Without
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loss of generality suppose that the coordinates of elements of the linear space

Vn are permuted so that vi = 0 for 1 ≤ i ≤ n−m and vi 6= 0 for i > n−m,

where m = w(v), the Hamming weight of v. Then we have

P (G)

P (K)
=

∏n
i=1 (1− (q − 1)pi)∏n−m

i=1 (1− (q − 1)pi)
∏n
i=n−m+1 pi

=
n∏

i=n−m+1

1− (q − 1)pi
pi

>
1− (q − 1)pn

pn

>
1− (q − 1)pl1

pl1
= F0(p).

The permutation of indices l is defined by the ordering (6).

Suppose that the statement of Theorem 1 is proved for all subgroups of

order not greater than qk−1. The inequality (7) for subgroups of order qk and

their cosets will be proved by induction over the coset leader weight m. Let

G be an arbitrary subgroup of order qk, and let K be an arbitrary coset of

it, with the element v as one of the coset leaders, w(v) = m.

Consider the case m = 1 first. Without loss of generality suppose that the

set {1, 2, . . . , k} is an information set of the code, and that vk+1 is the only

non–zero coordinate of v (this can be achieved by an appropriate permutation

of coordinates). Let x′ = [x1 x2 . . . xk]
T . Denote

g(x′) = [x1 x2 . . . xk Lk+1 . . . Ln]T , (30)

and

c(x′) = g(x′) + v = [x1 x2 . . . xk Lk+1 + vk+1 . . . Ln]T . (31)

Here Li = Li(x
′), k + 1 ≤ i ≤ n, are some linear combinations of the

independent variables x1, x2, . . . , xk. Obviously, we can write

G = {g(x′) | x′ ∈ Vk}, (32)
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and

K = {c(x′) | x′ ∈ Vk}. (33)

The set Vk is partitioned in q disjoint subsets Du, u ∈ V1, according to the

value of the linear combination Lk+1(x′), x′ ∈ Vk,

Du = {x′ ∈ Vk | Lk+1(x′) = u}, u ∈ V1.

Denote

Tu =
∑

x′∈Du

(
k∏

i=1

pi,xi

)


n∏

i=k+2

pi,Li


 , u ∈ V1,

where pi,j, 1 ≤ i ≤ n, j ∈ V1, are given by (2). The probabilities pi,0 are

denoted by qi, 1 ≤ i ≤ n.

The set G0 = {g(x′) | x′ ∈ D0} is a subgroup of G. Suppose first that

G0 = G, i.e. Lk+1(x′) ≡ 0, x′ ∈ Vk. According to Property 2 of the function

F we have
P (K)

P (G)
=
pk+1

qk+1

≤ pj1
qj1

= φ0(p) ≤ φk(p),

which means that the inequality (7) is true in this case. Here we denoted

1/Fk(p) by φk(p) for simplicity.

Suppose now that Lk+1(x′) 6= 0 for some x′ ∈ Vk. The order of G0 is

then qk−1, and the sets Gu = {g(x′) | x′ ∈ Du}, u ∈ V1, u 6= 0, are the

cosets of G0. Denote by G′u the set obtained from the set Gu by deleting

the (k + 1)–th coordinate from all of its elements, u ∈ V1, and let p′ =

(p1, . . . , pk, pk+2, . . . , pn). According to Lemma 1, the order of the subgroup

G′0 is qk−1. Since the sets G′u, u 6= 0, are the cosets of G′0, by the inductive

hypothesis we get

Tu/T0 ≤ φk−1(p′), u ∈ V1, u 6= 0, (34)
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because P (G′u) = Tu. The probabilities P (G) and P (K) can be expressed by

P (G) = qk+1T0 + pk+1T

and

P (K) = qk+1T−v + pk+1 (T + T0 − T−v) ,

where T =
∑
u∈V1

Tu − T0 and v = vk+1. Thus, we have

P (K)

P (G)
= 1− (qk+1 − pk+1)

1− (T−v/T0)

qk+1 + pk+1(T/T0)
.

The right–hand side of this equality increases with both T−v/T0 and T/T0.

Therefore, using the inequalities (34) we get

P (K)

P (G)
≤ 1− (qk+1 − pk+1)

1− φk−1(p′)
qk+1 + pk+1(q − 1)φk−1(p′)

(35)

=
1− (1− pk+1)(1− φk−1(p′))
1− pk+1(q − 1)(1− φk−1(p′))

.

Suppose that j1, j2, . . . , jk are the indices in vector p of the k largest coordi-

nates of vector p′. Then we have

φk−1(p′) =
1− Π

1 + (q − 1)Π
,

where Π =
∏k
i=1 (1− qpji). Substituting this in the right–hand side of (35)

we get
P (K)

P (G)
≤ 1− (1− qpk+1)Π

1 + (1− qpk+1)(q − 1)Π
.

Denote the right–hand side of this inequality by A. From the definition of

the vector p′ we obviously have ji 6= k+ 1 for 1 ≤ i ≤ k. If pk+1 is one of the

k + 1 largest coordinates of p, then A = φk(p). Otherwise we have

pk+1 ≤ plk+1

23



(the permutation l is defined by (6)), and since A is a non-decreasing function

of pk+1, we get A ≤ φk(p). Thus, if the weight of the coset leader v is one,

then in both cases inequality (7) holds.

Suppose now that (7) is proved for subgroups G of order not exceeding

qk−1, and also when the order of G is qk, but the weight of a coset leader of

K is less than m, m ≥ 1. Suppose G is an arbitrary subgroup of order qk

and K is any coset of G. Let v be a coset leader of K, w(v) = m. Similarly

to the case m = 1, we can assume without loss of generality that the set

{1, 2, . . . , k} is an information set of G, and that the indices of the non-zero

coordinates of v are k+1, k+2, . . . , k+m. Any element of G can be expressed

by (30), and the elements of K are given by

c(x′) = g(x′) + v

= [x1 . . . xk Lk+1 + vk+1 . . . Lk+m + vk+m . . . Ln]T , x′ ∈ Vk,

i.e. the equalities (32) and (33) hold. The set Vk is partitioned in q disjoint

subsets Du, u ∈ V1, according to the value of Lk+m(x′)

Du = {x′ ∈ Vk | Lk+m(x′) = u}, u ∈ V1.

Denote by Tu and Ru, u ∈ V1, the sums

Tu =
∑

x′∈Du

(
k∏

i=1

pi,xi

)

k+m−1∏

i=k+1

pi,Li






n∏

i=k+m+1

pi,Li


 ,

and

Ru =
∑

x′∈Du

(
k∏

i=1

pi,xi

)

k+m−1∏

i=k+1

pi,Li+vi






n∏

i=k+m+1

pi,Li




respectively, see (2). Then we have

P (G) = qk+mT0 + pk+mT (36)
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and

P (K) = qk+mR−v + pk+m (R−R−v +R0) , (37)

where T =
∑
u∈V1

Tu −T0, R =
∑
u∈V1

Ru −R0 and v = vk+m. Suppose G′ is

a subgroup obtained from G by replacing the (k+m)–th coordinate in every

element of G by zero. Similarly, let K ′ be the set of vectors obtained from

K by replacing the (k + m)–th coordinate in every element of K by zero.

According to Lemma 1, the order of G′ is qk. The set K ′ is a coset of G′,

and the element

v′ = [0 . . . 0 vk+1 . . . vk+m−1 0 . . . 0]T

is one of its coset leaders (see for example [9, Theorem 3.9]). The weight of

the vector v′ is m− 1, and so by the inductive hypothesis we have

P (K ′)/P (G′) ≤ φk(p
′) < 1, (38)

where p′ is the vector obtained from p by deleting its (k+m)–th coordinate.

Substituting P (G′) = qk+m(T0 + T ) and P (K ′) = qk+m(R0 + R) in the

preceding inequality, we obtain

φk(p)(T0 + T ) ≥ R0 +R, (39)

because φk(p
′) ≤ φk(p).

Consider the case Lk+m(x′) ≡ 0, x′ ∈ Vk, first. Then we have D0 = Vk,

and consequently G0 = {g(x′) | x′ ∈ D0} = G and Tu = Ru = 0 for u 6= 0.

Replacing P (G) by P (G′) and P (K) by (pk+m/qk+m)P (K ′), from (38) we

get
P (K)

P (G)
=
pk+m

qk+m

P (K ′)
P (G′)

<
pk+m

qk+m

≤ pj1
qj1

= φ0(p) ≤ φk(p).
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Suppose now that Lk+m(x′) 6= 0 for some x′ ∈ Vk. G0 is a subgroup

of order qk−1 of the group G and for arbitrary u 6= 0, u ∈ V1, the set

Ku = {c(x′) | x′ ∈ Du} is the coset of G0. Since the probability of the

subgroup G′0 is qk+mT0, by the inductive hypothesis we have

P (K−v)
P (G′0)

=
R−v
T0

≤ φk−1(p) ≤ φk(p),

see Property 2 of the function Fk(p), or

T0φk(p)−R−v > 0.

Combining (39) with this inequality, we get the inequality

pk+m(−φk(p)T +R0 +R−R−v) ≤ pk+m(φk(p)T0 −R−v)
< qk+m(φk(p)T0 −R−v),

which is equivalent to φk(p)P (G) > P (K). This completes the proof of (7)

for any m ≥ 1, when the subgroup is of order qk. Thus, we proved by

induction that inequality (7) holds for the subgroups of order qk, for any

k, 0 ≤ k < n.

Proof of Theorem 2

By an appropriate substitution we shall reduce the problem to the case of

y = 0. Define the random variable E′ by E′ = E + x + y. Next, define the

vector sequence {P̄(j)}j≥0 by

P̄
(j)
i =




P

(j)
i , yi = xi

1− P (j)
i , yi 6= xi

, 1 ≤ i ≤ n, j ≥ 0. (40)
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It is evident that P(j) is the error probability vector of E if, and only if, P̄
(j)

is the error probability vector of E′, j ≥ 0. The sequence {P̄(j)}j≥0 satisfies

the recurrent relation

P̄
(j+1)

= F0(P̄
(j)

), j ≥ 0,

because if for some fixed j ≥ 0 we denote F0(P̄
(j)

) by P, then

Pi = P
P̄

(j)

(
{Ei = 1} | {H(i)E = 0}

)

= PP(j)

(
{E ′i = 1} | {H(i)E′ = 0}

)

= PP(j)

(
{Ei = 1 + xi + yi} | {H(i)E = H(i)y}

)

=




P

(j+1)
i , xi = yi

1− P (j+1)
i , xi 6= yi

= P̄
(j+1)
i , 1 ≤ i ≤ n.

Note that the coordinates of P̄
(d)

satisfy the inequalities

P̄
(d)
i < 1/2, 1 ≤ i ≤ n, (41)

see (40) and (13). If we define the sequence {A(j)}j≥0 by

A
(j)
i =

1− P̄ (j)
i

P̄
(j)
i

=
1

P̄
(j)
i

− 1, 1 ≤ i ≤ n, j ≥ 0, (42)

then from (41) it follows that A
(d)
i > 1 for all i, 1 ≤ i ≤ n.

Denote by Cu
i the set obtained from the set {e ∈ Vn | H(i)e = 0, ei = u}

by deleting the i–th coordinate in every element of it, u ∈ {0, 1}, 1 ≤ i ≤ n.

The set C0
i is a subgroup of order exp2(ki) ( ki ≥ k) of the group Vn−1, and

the set C1
i is coset of C0

i , 1 ≤ i ≤ n.

Let P̄
(j,i)

denote the vector obtained from P̄
(j)

by deleting its i–th coor-

dinate, j ≥ d, 1 ≤ i ≤ n, and let

δi = Fki(P̄
(d,i)

) > 1, 1 ≤ i ≤ n,
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see (5). By induction it can be proved that for all j, j ≥ d, we have A
(j)
i >

1, 1 ≤ i ≤ n, and that for j > d the stronger inequality

A
(j)
i > A

(j−1)
i δi > 1, 1 ≤ i ≤ n, (43)

holds. For j = d this statement is obviously true. Suppose that it is true for

d, d+ 1, . . . , j. According to Theorem 1, for j > d we have

P
P̄

(j,i)

(
C0
i

)
/P

P̄
(j,i)

(
C1
i

)
≥ Fki(P̄

(j,i)
), 1 ≤ i ≤ n.

By the inductive hypothesis and (42) the coordinates of P̄
(j,i)

are greater

than the corresponding coordinates of P̄
(d,i)

, and so by Property 3 of the

function F we have

Fki(P̄
(j,i)

) ≥ Fki(P̄
(d,i)

) = δi, 1 ≤ i ≤ n.

For j = d this inequality is obviously true. From (10) and (42) we have

A
(j+1)
i = A

(j)
i P

P̄
(j,i)

(
C0
i

)
/P

P̄
(j,i)

(
C1
i

)
,

and from the last two inequalities, it follows that A
(j+1)
i > A

(j)
i δi, 1 ≤ i ≤ n.

Therefore, it is proved by induction that (43) holds for all j, j > d. As an

immediate consequence of (43) we have

lim
j→∞

A
(j)
i = +∞, 1 ≤ i ≤ n,

and further, because of (42),

lim
j→∞

P̄
(j)
i = 0, 1 ≤ i ≤ n.

The statement of Theorem 2 directly follows from this equation and (40).
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Proof of Theorem 3

As in Theorem 2 the derivation is based on a reduction to the case where

the received message y equals 0. Define the matrix sequence {B̄(s)}s≥0 by

means of the sequence {B(s)}s≥0 as follows

B̄
(s)
r,i =




B

(s)
r,i , yi = xi

1−B(s)
r,i , yi 6= xi

, 1 ≤ r ≤ R, 1 ≤ i ≤ n, s ≥ 0 (44)

Next, define the random variable Ē by Ē = E+x+y. Denote by p̄ the error

probability vector of Ē, i.e.

p̄i =




pi, xi = yi

1− pi, xi 6= yi
, 1 ≤ i ≤ n,

where p is the error probability vector of E. For an arbitrary s ≥ 0 and

(r, i) ∈ H1 (22) let g = g(H,B(s), r, i) and ḡ = g(H, B̄
(s)
, r, i), see (23). We

have

ḡi =




gi, xi = yi

1− gi, xi 6= yi
, 1 ≤ i ≤ n,

and therefore g is the error probability vector of E if, and only if, ḡ is the

error probability vector of Ē.

If we denote Φ0,p̄(B̄
(s)

) by B, then for (r, i) ∈ H1 we have

Br,i = Pḡ

(
{Ei = 1} | {H(i,r)E = 0}

)

= Pg

(
{Ēi = 1} | {H(i,r)Ē = 0}

)

= Pg

(
{Ei = 1 + xi + yi} | {H(i,r)E = H(i,r)y}

)

=




B

(s+1)
r,i , xi = yi

1−B(s+1)
r,i , xi 6= yi

= B̄
(s+1)
r,i .
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We conclude that the sequence {B̄(s)}s≥0 satisfies the recurrent relation

B̄
(s+1)

= Φ0,p̄(B̄
(s)

), s ≥ 0.

From (28) and (44) it follows that the elements B̄
(d)
r,i , (r, i) ∈ H1, of B̄

(d)
are

less than t0.

For u ∈ {0, 1} and (r, i) ∈ H1 denote by Cu
i,r the set of vectors {e ∈ Vn |

H(i,r)e = 0, ei = u}. The set C0
i,r is a subgroup of Vn, and the set C1

i,r is a

coset of C0
i,r. Let us fix the pair (r, i) ∈ H1. The matrix H(i,r) has a simple

structure, because it contains j−1 orthogonal parity checks with k members.

We shall find the lower bound on the ratio P{E ∈ C0
i,r}/P{E ∈ C1

i,r} first

(directly, not by the use of Theorem 1), where E is an n–dimensional binary

random variable with independent coordinates, and p is the error probability

vector of E (with coordinates less than 1/2). Here we shall use a more

appropriate notation. The coordinates of E contained in the ι–th parity check

are denoted by E0, Eι,1, . . . , Eι,k−1, 1 ≤ ι ≤ j − 1, and the corresponding

probabilities are denoted by P {E0 = 1} = u and P {Eι,κ = 1} = uι,κ, 1 ≤
ι ≤ j−1, 1 ≤ κ ≤ k−1. Using the fact that the parity checks are orthogonal,

it can easily be deduced [6, Theorem 1] that

P{E ∈ C0
i,r}

P{E ∈ C1
i,r}

=
1− u
u

j−1∏

ι=1

1 +
∏k−1
κ=1 (1− 2uι,κ)

1−∏k−1
κ=1 (1− 2uι,κ)

.

Since this is a decreasing function of uι,κ(uι,κ < 1/2) for 1 ≤ ι ≤ j − 1, 1 ≤
κ < k, we have

P{E ∈ C0
i,r}

P{E ∈ C1
i,r}
≥ 1− u

u

(
1 + (1− 2U)k−1

1− (1− 2U)k−1

)j−1

, (45)

if

U ≥ max {uι,κ | 1 ≤ ι ≤ j − 1, 1 ≤ κ < k} .
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Here the equality holds if, and only if, uι,κ = U, 1 ≤ ι ≤ j − 1, 1 ≤ κ < k.

Let

b(s) = max
{
B̄

(s)
r,i | (r, i) ∈ H1

}
, s ≥ 0. (46)

Combining (24) and (45), we get the inequality

B̄
(s+1)
r,i ≤


1 +

1− p̄i
p̄i




1 +
(
1− 2b(s)

)k−1

1− (1− 2b(s))
k−1




j−1



−1

= fj,k,p̄i
(
b(s)

)
≤ fj,k,1−p

(
b(s)

)
, (r, i) ∈ H1, s ≥ 0,

and consequently

b(s+1) ≤ fj,k,1−p
(
b(s)

)
, s ≥ 0.

From (44) and (28) it follows that b(d) < t0(j, k, 1− p). But then, using (27),

we get the inequality

b(d+1) ≤ fj,k,1−p(b(d)) < b(d).

It is seen that (28) is satisfied if we replace d by d + 1. By induction over s

we conclude that

b(s+1) ≤ fj,k,1−p
(
b(s)

)
< b(s), s ≥ d (47)

Since the sequence
{
b(s)

}
is positive and decreasing, it converges. Denote by

b∗ its limit when s → +∞. From the continuity of fj,k,1−p(t) and (47), it

follows that b∗ = f(b∗), and so b∗ = 0. According to (46) we have

lim
s→∞ B̄

(s)
r,i = 0, (r, i) ∈ H1.

Finally, from (44) we get the equality (29).
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Figure 1: Dependence of the estimated successful decoding probability on

the BSC error probability for the (512, 100) code of Example 2, when Algo-

rithm P1 includes 1, 2, 3, 5, 7 and 10 iterations
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Figure 2: Dependence of the estimated successful decoding probability on

the Gaussian channel SNR for the (512, 100) code of Example 3, when Algo-

rithm P1 includes 1, 2, 3, 5, 7 and 10 iterations
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