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SUMMARY: The current paper is aimed at getting more insight on three main
points concerning large-scale astrophysical systems, namely: (i) formulation of ten-
sor virial equations from the standpoint of analytical mechanics; (ii) investigation
on the role of systematic and random motions with respect to virial equilibrium
configurations; (iii) determination of extent to which systematic and random mo-
tions are equivalent in flattening or elongating the shape of a mass distribution.
The tensor virial equations are formulated regardless of the nature of the system
and its constituents, by generalizing and extending a procedure used for the scalar
virial equations in presence of discrete subunits (Landau and Lifchitz 1966). In
particular, the self potential-energy tensor is shown to be symmetric with respect

to the exchange of the indices, (Epot)pq = (Epot)qp. Then the results are extended
to continuous mass distributions. The role of systematic and random motions in
collisionless, ideal, self-gravitating fluids is analysed in detail including radial and
tangential velocity dispersion on the equatorial plane, and the related mean angular

velocity, Ω, is conceived as a figure rotation. R3 fluids are defined as ideal, self-
gravitating fluids in virial equilibrium, with systematic rotation around a principal
axis of inertia, taken to be x3. The related virial equations are written in terms

of the moment of inertia tensor, Ipq, the self potential-energy tensor, (Epot)pq, and

the generalized anisotropy tensor, ζpq (Caimmi and Marmo 2005, Caimmi 2006a).
Additional effort is devoted to the investigation of the properties of axisymmetric
and triaxial configurations. A unified theory of systematic and random motions
is developed for R3 fluids, taking into consideration imaginary rotation (Caimmi
1996b, 2006a), and a number of theorems previously stated for homeoidally striated
Jacobi ellipsoids (Caimmi 2006a) are extended to the more general case of R3 flu-
ids. The effect of random motion excess is shown to be equivalent to an additional
real or imaginary rotation, respectively, inducing flattening (along the equatorial
plane) or elongation (along the rotation axis). Then it is realized that a R3 fluid
always admits an adjoint configuration with isotropic random velocity distribution.
In addition, further constraints are established on the amount of random velocity
anisotropy along the principal axes, for triaxial configurations. A necessary con-
dition is formulated for the occurrence of bifurcation points from axisymmetric to
triaxial configurations in virial equilibrium, which is independent of the anisotropy
parameters. A particularization of general relations is made to the special case of
homeoidally striated Jacobi ellipsoid, and some previously known results (Caimmi
2006a) are reproduced.
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1. INTRODUCTION

Large-scale celestial objects, such as stellar
systems, galaxy clusters, and (non baryonic) dark
matter haloes predicted by current QCDM cosmolo-
gies, may safely be represented as collisionless, ideal
self-gravitating fluids. The related flow equation
takes the same formal expression as in their col-
lisional counterpart, with the exception that the
pressure force is generalized in terms of a stress
tensor, allowing different rms velocities along dif-
ferent directions [e.g. Binney and Tremaine 1987
(hereafter quoted as BT87), Chap. 4, § 2]. Accord-
ingly, collisionless fluids can be flattened equally
well by rotation (with respect to a selected axis)
and/or anisotropic random velocity distribution i.e.
anisotropic pressure (e.g. Caimmi 2006a, hereafter
quoted as C061). In fact, giant elliptical galax-
ies exhibit a negligible amount of (systematic) ro-
tation, and their shape is mainly due to anisotropic
pressure (e.g. Bertola and Capaccioli 1975, Illing-
worth 1977, 1981, Schechter and Gunn 1979, BT87,
Chap. 4, § 36).

If the dark energy (quintessence, if it is due to
a scalar field rolling down its own potential) clusters
on scales of dark matter haloes (e.g. Mota and van de
Bruck 2004, Maor and Lahav 2005, Nunes and Mota
2006), quintessence components within 2-component
systems (matter + quintessence) may safely be rep-
resented as collisionless, ideal self-interacting fluids
where both the nature and the strength of the inter-
action are expected, in general, to be different from
the case of gravitation.

Collisionless fluids of astrophysical and cosmo-
logical interest range over about ten orders of mag-
nitude in mass, say from globular clusters to galaxy
clusters, provided gaseous i.e. collisional component
may safely be neglected. Therefore, it seems neces-
sary to investigate the role of systematic and random
motions in making virialized collisionless fluids. To
this respect, the virial theorem in tensor form may be
a useful tool. According to the standard procedure,
the tensor virial equations are determined along the
following steps (e.g. Binney 1978, 2005, Wiegandt
1982a,b, BT87, Chap. 4, § 3): (a) start with the col-
lisionless Boltzmann equations; (b) derive a set of
moment equations; (c) integrate the above set of mo-
ment equations, under some simplifying assunptions.

To the (limited) knowledge of the author, no
attempt can be found in the literature where (i)
the tensor virial equations are formulated from the
standpoint of analytical mechanics, (ii) the role of
systematic and random motions is clearly stated, and
(iii) the equivalence between systematic and random
motions in flattening or elongating the boundary, is
clearly established.

Concerning (i), the tensor virial equations
could be determined regardless of the nature of the

system and its constituents, by generalizing and ex-
tending a procedure used for the scalar virial equa-
tions [Landau and Lifchitz 1966 (hereafter quoted
as LL66), Chap. II, § 10]. Regarding (ii), prelimi-
nary considerations reported in previous attempts
[Caimmi 1996a,b, Caimmi and Marmo 2005 (here-
after quoted as CM05), C06] should be further im-
proved and developed. In dealing with (iii), the defi-
nition of imaginary rotation allows an interpretation
of rms velocity excess in terms of systematic rota-
tion around a fixed principal axis (Caimmi 1996b,
C06, Caimmi 2006b,1 which could be inserted in the
context under discussion. A detailed investigation
on the above mentioned points is the purpose of the
present attempt.

To this aim, the simplest case of one-
component systems shall be considered. To tell the
truth, two-component (or more) systems are com-
mon between large-scale astrophysical objects (e.g.
gas + stars; baryonic + dark matter; matter + dark
energy), and further study should be devoted to the
above mentioned topics. For instance, both the for-
mulation of the virial theorem (e.g. Limber 1959,
Brosche et al. 1983, Caimmi and Secco 1992, Horel-
lou and Berge 2005, Maor and Lahav 2005, Percival
2005, Caimmi 2007), and the occurrence of a bifur-
cation point from axisymmetric to triaxial config-
urations (e.g. Durisen 1978, Pacheco et al. 1986,
Caimmi 1996a, Balaguera-Antolinez et al. 2006) are
influenced by the presence of a secondary subsystem.

The current paper is organized as follows.
A general formulation of the tensor virial theorem
which holds, in particular, for the gravitational inter-
action is provided in Section 2. The properties of R3
fluids, defined as ideal, self-gravitating fluids in virial
equilibrium, rotating around a principal axis, taken
to be x3, are studied in Section 3, where a number of
theorems previously stated for homeoidally striated
Jacobi ellipsoids (C06) are extended to the more gen-
eral case of R3 fluids. A unified theory of systematic
and random motions is provided in Section 4, where
some general relations are particularized to the spe-
cial case of homeoidally striated Jacobi ellipsoids,
and previously known results (Caimmi 1996a,b, C06)
are reproduced. Some concluding remarks are drawn
in Section 5, and a few arguments are treated in more
detail in the Appendix.

2. THE TENSOR VIRIAL THEOREM

A general procedure used for the formulation
of the scalar virial theorem (LL66, Chap. II, § 10) will
be followed here in the derivation of the tensor virial
theorem. Let us take into consideration a mechanical
system made of N particles, referred to an inertial
reference frame. Let (xi)r, (vi)r, be the position and
velocity components related to i-th particle, and mi
the mass, 1 ≤ i ≤ N , 1 ≤ r ≤ 3.

1A more extended file including an earlier version of the above quoted paper is available at the arxiv electronic site, as
astro-ph/0507314.
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The kinetic-energy tensor:

(Ekin)pq =
1
2

N∑

i=1

mi(vi)p(vi)q ; (1)

is a function of N or 2N variables, (vi)r, 1 ≤ i ≤ N ,
1 ≤ p ≤ 3, 1 ≤ q ≤ 3, for selected p and q, depending
on whether the tensor components are diagonal or
non diagonal, respectively. The kinetic-energy tensor
is manifestly symmetric with respect to the exchange
of the indices:

(Ekin)pq = (Ekin)qp ; (2)

and the trace is the kinetic energy:

Ekin =
3∑

s=1

(Ekin)ss =
1
2

N∑

i=1

3∑
s=1

mi(vi)2s ; (3)

which is a function of 3N variables, (vi)r, 1 ≤ i ≤ N ,
1 ≤ r ≤ 3. The first partial derivatives are:

(pi)r =
∂Ekin

∂(vi)r
= mi(vi)r ; (4)

where (pi)r, 1 ≤ i ≤ N , 1 ≤ r ≤ 3, is the momentum
component of i particle (e.g. LL66, Chap. II, § 7).

The combination of Eqs. (1) and (4) yields:

2(Ekin)pq =
N∑

i=1

(vi)p(pi)q ; (5)

which is equivalent to:

2(Ekin)pq =
d

dt

[
N∑

i=1

(xi)p(pi)q

]
−

N∑

i=1

(xi)p(ṗi)q ;

(6)
or, using Newton’s equations (e.g. LL66, Cap. I, § 5):

2(Ekin)pq =
d

dt

[
N∑

i=1

(xi)p(pi)q

]
+

N∑

i=1

(xi)p
∂Epot

∂(xi)q
;

(7)
where Epot[(xi)r], 1 ≤ i ≤ N , 1 ≤ r ≤ 3, is the self
potential energy.

The last term on the right-hand side of Eq. (7)
defines a tensor, the trace of which is usually named
the virial of the system (Clausius 1870). In the au-
thor’s opinion, it would be better to refer to the virial
and its parent tensor as the virial potential energy
and the virial potential-energy tensor, respectively.

If the self potential energy is a homogeneous
function of the coordinates, of degree χ, then the
following relation holds:

Epot[ζ × (xi)r] = ζχEpot[(xi)r] ; (8)

which, in turn, implies:

(Epot)pq[ζ × (xi)r] = ζχ(Epot)pq[(xi)r] ; (9)

where (Epot)pq is defined as the self potential-energy
tensor:

(Epot)pq =
1
χ

N∑

i=1

(xi)p
∂Epot

∂(xi)q
; (10)

and ζ is a positive real number, provided the alge-
braic product, ζ × (xi)r, 1 ≤ i ≤ N , 1 ≤ r ≤ 3,
belongs to the domain of Epot. The special case,
χ = −1, corresponds to the gravitational interaction.

With regard to the self potential energy for
the system under consideration, the Euler theorem
reads:

3∑
s=1

N∑

i=1

(xi)s
∂Epot

∂(xi)s
= χEpot ; (11)

and the combination of Eqs. (10) and (11) yields:

3∑
s=1

(Epot)ss = Epot ; (12)

as expected.
The substitution of Eq. (10) into (7) yields:

d

dt

[
N∑

i=1

(xi)p(pi)q

]
= 2(Ekin)pq − χ(Epot)pq ; (13)

and the sum of Eq. (13) and its counterpart with the
indices p and q interchanged, reads:

d

dt

N∑

i=1

[(xi)p(pi)q + (xi)q(pi)p] = 2[(Ekin)pq

+(Ekin)qp]− χ[(Epot)pq + (Epot)qp] , (14)

Let us define the moment of inertia tensor2
[e.g. Chandrasekhar 1969 (hereafter quoted as C69),
Chap. 2, § 9; BT87, Chap. 4, § 3]:

Ipq =
N∑

i=1

mi(xi)p(xi)q ; (15a)

3∑
s=1

Iss = I ; (15b)

where I is the total moment of inertia of the system,
with respect to the centre of mass. Owing to Eq. (4),
the first time derivative is:

İpq =
dIpq

dt
=

N∑

i=1

[(xi)p(pi)q + (xi)q(pi)p] ; (16)

2In this formulation, the moment of inertia with respect to a coordinate axis, xr, is Ir = Ipp + Iqq, r 6= p 6= q. For a different
formulation where Ir = Irr, r = 1, 2, 3, see LL66 (Chap.VI, § 32).
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and the combination of Eqs. (2), (14), and (16),
yields:

Ïpq = 4(Ekin)pq − χ[(Epot)pq + (Epot)qp] ; (17)

on the other hand, the difference of Eq. (13) with
its counterpart where the indices, p and q, are inter-
changed, reads:

d

dt

N∑

i=1

[(xi)p(pi)q − (xi)q(pi)p]

= −χ[(Epot)pq − (Epot)qp] . (18)

owing to Eq. (2).
With regard to the vectors, ~ri[(xi)1, (xi)2, (xi)3]

and ~pi[(pi)1, (pi)2, (pi)3], and to the vector product,
~Ji = ~ri×~pi, the sum on the left-hand side of Eq. (18)
reads (e.g. Spiegel 1968, Chap. 2.2, §§ 11-12):

N∑

i=1

[(xi)p(pi)q − (xi)q(pi)p] =
N∑

i=1

−−→vers(xr) · (~ri × ~pi)

= −−→vers(xr) ·
N∑

i=1

~Ji = −−→vers(xr) · ~J = Jr ; (19)

where −−→vers(xr) is the versor, or unit vector, parallel
to the coordinate axis, xr, r 6= p 6= q, and J is the
total angular momentum of the system.

The combination of Eqs. (18) and (19) yields:

dJr

dt
= −χ[(Epot)pq − (Epot)qp] ; (20)

and the conservation of angular momentum, which
always holds for isolated systems (e.g. LL66,
Chap. 2, § 9), implies the symmetry of the self
potential-energy tensor with respect to the exchange
of the indices:

(Epot)pq = (Epot)qp ; (21)

so that Eq. (17) takes the form:

1
2
Ïpq = 2(Ekin)pq − χ(Epot)pq , (22)

which makes the virial equations of the second or-
der (for the special case of gravitational interaction,
χ = −1, see e.g. C69, Chap. 2, § 11; BT87, Chap. 4,
§ 3).

The further constraint:

Ïpq = 0 ; 1 ≤ p ≤ 3 ; 1 ≤ q ≤ 3 ; (23)

makes Eqs. (22) reduce to:

2(Ekin)pq −χ(Epot)pq = 0 ; 1 ≤ p ≤ 3 ; 1 ≤ q ≤ 3 ;
(24)

which is the expression of the virial theorem in tensor
form3. Strictly speaking, it holds when the moment
of inertia tensor has a linear dependence on time,
Ipq = kpqt + cpq, where kpq and cpq are constants.
The special case, kpq = 0, 1 ≤ p ≤ 3, 1 ≤ q ≤ 3, is
related to dynamical or hydrostatic equilibrium (e.g.
BT87, Chap. 4, § 3).

An alternative constraint is that the first
time derivatives of the moment of inertia tensor are
bounded, as:

|İpq(t)| ≤ Mpq ; 1 ≤ p ≤ 3 ; 1 ≤ q ≤ 3 ; (25)

where Mpq are suitable real numbers. Accordingly,
it can be seen that the time average of the second
time derivetives of the moment of inertia tensor are
null (e.g. LL66, Chap. II, § 10):

Ïpq = 0 ; 1 ≤ p ≤ 3 ; 1 ≤ q ≤ 3 ; (26)

which makes Eq. (22) reduce to:

2(Ekin)pq −χ(Epot)pq = 0 ; 1 ≤ p ≤ 3 ; 1 ≤ q ≤ 3 ;
(27)

where time averages are calculated over a sufficiently
long (ideally infinite) step (e.g. LL66, Chap. 2, § 10).
In presence of periodic motions (e.g. a homogeneous
sphere undergoing coherent oscillations), time aver-
ages can be calculated over a single (or a multiple)
period.

For the sake of simplicity, in what follows the
tensor virial theorem will be expressed by Eq. (24)
where the kinetic-energy and self potential-energy
tensors are to be considered as instantaneous or time
averaged, depending on whether the constraint de-
fined by Eq. (23) or (26) holds.

The particularization of Eq. (24) to diagonal
components, after summation on both sides, pro-
duces:

2Ekin − χEpot = 0 ; (28)

which is the expression of the virial theorem in scalar
form (e.g. LL66, Chap. II, § 10). Special cases are
(a) Newtonian and Coulombian interaction, χ = −1,
and (b) Hookeian interaction, χ = 2. If the system is
in dynamical or hydrostatic equilibrium, mean values
coincide with instantaneous values.

The above results are quite general and hold
regardless of the nature of the system and its con-
stituents, provided no dissipation and/or external in-
teraction occur. With regard to a specified system,
the sole restrictions to be made are (i) the evolution
takes place within a finite region of the phase hy-
perspace i.e. 0 ≤ |(xi)r| < Mxi , 0 ≤ |(vi)r| < Mvi ,
1 ≤ i ≤ N , 1 ≤ r ≤ 3, where Mxi , Mvi , are conve-
nient real numbers, and (ii) the self potential energy

3Some authors prefer a more general formulation, expressed by Eq. (22) (e.g. BT87, Chap. 4, § 3). On the other hand, a more
restricted formulation, expressed by Eq. (24), has a closer connection with the scalar virial theorem, which explains the choice
adopted here.
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is a homogeneous function of the 3N coordinates, of
degree χ.

In dealing with continuous matter distribu-
tions rather then with mass points, the parti-
cle mass, mi, has to be replaced by the mass
within an infinitesimal volume element, dm =
ρ(x1, x2, x3) dx1 dx2 dx3, where ρ is the density, and
an integration has to be performed over the whole
volume, S, instead of a summation over the coordi-
nates related to all the particles. For further details
see e.g. Limber (1959). Accordingly, the kinetic-
energy tensor and the kinetic energy attain their
usual expressions (C69, Chap. 2, § 9):

(Ekin)pq =
1
2

∫

S

ρ(x1, x2, x3)vpvq d3S ; (29)

(Ekin) =
1
2

∫

S

ρ(x1, x2, x3)
3∑

s=1

v2
s d3S ; (30)

on the other hand, the self potential-energy tensor
and the self potential energy read:

(Epot)pq = − 1
χ

∫

S

ρχ(x1, x2, x3)xp
∂V
∂xq

d3S ; (31)

(Epot) = − 1
χ

∫

S

ρχ(x1, x2, x3)
3∑

s=1

xs
∂V
∂xs

d3S ,(32)

where ρχ is a charge density and V is a potential func-
tion, defined as the tidal potential energy due to the
whole charge distribution, related to the point under
consideration, with the unit charge placed therein.
For further details, see Appendix A.

Let us define the total-energy tensor, as:

Epq = (Ekin)pq + (Epot)pq ; (33)

owing to Eqs. (3) and (12), the related trace:

E =
3∑

s=1

Ess = Ekin + Epot (34)

is the total energy.
The combination of Eqs. (24), (33), and (28),

(34), respectively, yields:

(Ekin)pq =
χ

χ + 2
Epq , (35)

(Epot)pq =
2

χ + 2
Epq , (36)

for tensor components, and:

Ekin =
χ

χ + 2
E , (37)

Epot =
2

χ + 2
E , (38)

for tensor traces.

3. SYSTEMATIC AND
RANDOM MOTIONS

3.1. Basic ideas

Let a collisionless, self-gravitating fluid be re-
ferred to an inertial frame, (Ox1x2x3), where (with-
out loss of generality) the origin coincides with the
centre of mass. The number of particles within an
infinitesimal hypervolume of the phase hyperspace at
the time, t, is:

d6N = f(x1, x2, x3, v1, v2, v3, t)

× dx1 dx2 dx3 dv1 dv2 dv3 ; (39)

where f ≥ 0 is the distribution function. The num-
ber of particles within an infinitesimal volume of the
ordinary space at the time, t, is:

d3N = dx1 dx2 dx3 ×∫ ∫ ∫
f(x1, x2, x3, v1, v2, v3, t) dv1 dv2 dv3; (40)

where the integration has to be performed over the
whole volume in velocity space. The number density
related to the infinitesimal volume element, d3S =
dx1 dx2 dx3, at the time, t, is:

n(x1, x2, x3, t) =
d3N
d3S

=
∫ ∫ ∫

f(x1, x2, x3, v1, v2, v3, t) dv1 dv2 dv3; (41)

if, in addition, the total particle number, N , and
the total mass, M , are conserved, then the following
normalization conditions hold:
∫ ∫ ∫ ∫ ∫ ∫

f(x1, x2, x3, v1, v2, v3, t) dx1 dx2 dx3

× dv1 dv2 dv3 = N ; (42)
∫ ∫ ∫

ρ(x1, x2, x3, t) dx1 dx2 dx3 = M ; (43)

where ρ is the mass density of the infinitesimal vol-
ume element, d3S, and the integrations have to be
carried over the whole hypervolume in phase hyper-
space and the whole volume in ordinary space, re-
spectively.

From the physical point of view, the volume
element is finite instead of infinitesimal, but still con-
taining a large amount of particles which, on the
other hand, is negligible with respect to the total
number. Accordingly, the following relations hold:

1 << ∆N (x1, x2, x3, t) << N ; (44a)
max(mi) << ∆M(x1, x2, x3, t) << M ; (44b)
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where ∆N and ∆M represent the particle total num-
ber and total mass within the volume element, ∆S,
at the time, t, and mi is the mass of i-th particle,
1 ≤ i ≤ ∆N . The related total mass, ∆M , may be
expressed as:

∆M(x1, x2, x3, t) =
∆N∑

i=1

mi ; (45)

and the mean particle mass within the volume ele-
ment, ∆S, at the time, t, reads:

m(x1, x2, x3, t) =
∆M(x1, x2, x3, t)
∆N (x1, x2, x3, t)

; (46)

according to the general definition of arithmetic
mean.

From the standpoint of a continuous mass
distribution, the following changes have to be
made: ∆S → d3S; ∆N (x1, x2, x3, t) → d3N ;
∆M(x1, x2, x3, t) → ρ(x1, x2, x3, t) d3S; and Eq. (46)
takes the form:

m(x1, x2, x3, t) = ρ(x1, x2, x3, t)
d3S

d3N
=

ρ(x1, x2, x3, t)
n(x1, x2, x3, t)

; (47)

in terms of mass density and number density.
With regard to Eqs. (42) and (43), equivalent

expressions are:
∫ ∫ ∫

n(x1, x2, x3, t) dx1 dx2 dx3 = N ; (48)
∫ ∫ ∫

ρ(x1, x2, x3, t) dx1 dx2 dx3 =
∫ ∫ ∫

m(x1, x2, x3, t)n(x1, x2, x3, t) dx1 dx2 dx3

= M ; (49)

and the division of both sides of Eq. (49) by their
counterparts in Eq. (48), yields:

m =
M

N , (50)

where, owing to the theorem of the mean, m is the
particle mass averaged over the whole volume. To-
tal mass and particle number conservation imply a
time independent mean particle mass, m. If, in ad-
dition, particles with different masses are uniformly
distributed throughout the whole volume, then the
mean particle mass within a generic volume ele-
ment, d3S, equals the mean particle mass within the
boundary, as:

m(x1, x2, x3, t) = m ; (51)

and the system may be considered, in any respect,
as made of N identical particles of mass m. Accord-
ingly, Eq. (47) reads:

ρ(x1, x2, x3, t) = m n(x1, x2, x3, t) ; (52)

which implies direct proportionality between mass
density and number density.

Using again the theorem of the mean, let
us define the mean velocity component, vp, and
the mean product velocity component, vpvq, within
a generic infinitesimal volume element, d3S =
dx1 dx2 dx3, at the time, t, as:

vp(x1, x2, x3, t) =∫ ∫ ∫
f(x1, x2, x3, v1, v2, v3, t)vp dv1 dv2 dv3∫ ∫ ∫
f(x1, x2, x3, v1, v2, v3, t) dv1 dv2 dv3

; (53)

vpvq(x1, x2, x3, t) =∫ ∫ ∫
f(x1, x2, x3, v1, v2, v3, t)vpvq dv1 dv2 dv3∫ ∫ ∫

f(x1, x2, x3, v1, v2, v3, t) dv1 dv2 dv3
, (54)

or, using Eq. (41),

vp(x1, x2, x3, t) =∫ ∫ ∫
f(x1, x2, x3, v1, v2, v3, t)vp dv1 dv2 dv3

n(x1, x2, x3, t)
; (55)

vpvq(x1, x2, x3, t) =∫ ∫ ∫
f(x1, x2, x3, v1, v2, v3, t)vpvq dv1 dv2 dv3

n(x1, x2, x3, t)
, (56)

in terms of the number density, n.
Let us define the distribution function in the

velocity space:

F (x1, x2, x3, v1, v2, v3, t) =
f(x1, x2, x3, v1, v2, v3, t)

n(x1, x2, x3, t)
,

(57)
which, owing to Eq. (41), satisfies the normalization
condition:

∫ ∫ ∫
F (x1, x2, x3, v1, v2, v3, t) dv1 dv2 dv3 = 1 ,

(58)
and the substitution of Eq. (57) into (55) and (56)
yields:

vp(x1, x2, x3, t) =∫ ∫ ∫
F (x1, x2, x3, v1, v2, v3, t)vp dv1 dv2 dv3 ; (59)

vpvq(x1, x2, x3, t) =∫ ∫ ∫
F (x1, x2, x3, v1, v2, v3, t)vpvq dv1 dv2 dv3, (60)

in terms of the distribution function, F .
From a statistical standpoint, the distribution

function, F , may be interpreted as a probability den-
sity in the velocity space, where F (x1, x2, x3, v1, v2,
v3, t) dv1 dv2 dv3 represents the probability of find-
ing a particle inside the volume element, d3S, at

18
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the time, t, with velocity components in the range,
vr∓ dvr/2, r = 1, 2, 3. In this view, the velocity com-
ponents, vp, and the product of the velocity compo-
nents, vpvq, may be considered as random variables.
According to the general definition of variance and
covariance (e.g. Oliva and Terrasi 1976, Chap. II,
§ 2.7), the following relations hold:

(v2
p)∗ = (v∗p)2 + σ2

vp
; (61)

(vpvq)∗ = v∗pv∗q + σvpvq , (62)

where the asterisk denotes the expectation value of
the related distribution, σ2

a is the mathematical (in-
tended as opposite to empirical) variance and σab

is the mathematical covariance. Accordingly, if two
random variables, a and b, are independent, cor-
related, or anticorrelated, the mathematical covari-
ance, σab, is null, positive, or negative, respectively.

With regard to an infinitesimal volume ele-
ment, d3S, at the time, t, the first terms on the
right-hand sides of Eqs. (61) and (62) are related to
the velocity components of the centre of mass, while
the second terms are related to velocity components
with respect to the centre of mass.

Expectation values and mathematical vari-
ances and covariances are a priori quantities which
cannot be determined by data collections. The re-
lated observables are arithmetic means and empiri-
cal variances and covariances (e.g. Oliva and Terrasi
1976, Chap. IV, § 4.3), and Eqs. (61) and (62) trans-
late into:

(v2
p) = (vp)2 + σ2

vp
; (63)

vpvq = vp vq + σvpvq , (64)

where the notation of variances and covariances has
been left unchanged, for sake of simplicity. Finally,
Eq. (63) may also be conglobed into Eq. (64), using
the definitions:

vrvr = (v2
r) ; σvrvr = σ2

vr
, (65)

where σvpvq may be considered as the generic com-
ponent of an empirical covariance tensor. If veloc-
ity components are independent, σvpvq = δpqσ

2
vp

,
where δpq is the Kronecker symbol, Eqs. (63) and (64)
merge into:

vpvq = vp vq + δpqσ
2
pp ; (66)

where σ2
rr = σvrvr = σ2

vr
to simplify the notation,

and considering σrr as velocity dispersions related to
random motions, with regard to a generic infinitesi-
mal volume element, d3S, at the time, t.

Having the centre of mass of the system been
chosen as origin of the (inertial) reference frame,
mean (over the whole volume) velocity components
along coordinate axes are necessarily null: vr = 0;
(e.g. LL66, Chap. II, § 8). Accordingly, σ2

rr = (v2
r),

σ2
pq = 0, p 6= q, and the random square velocity ten-

sor, σ2
pq = vpvq, is diagonal.

3.2. Radial and tangential velocity
dispersion on the equatorial plane

Aiming at expressing the contribution of sys-
tematic and random motions along the equatorial
plane in terms of angular velocities, a detailed analy-
sis of radial and tangential velocity dispersion on the
equatorial plane is needed.

Let us define the axes of the system as the
distances between opposite points along the princi-
pal axes of inertia, belonging to the external surface,
and semiaxes the distances between the tops of the
axes and the centre of mass. In general, semiaxes on
opposite sides are different in length. Let the coor-
dinate axis x3, containing the axis a3, be chosen as
rotation axis, without loss of generality, as the ref-
erence frame may arbitrarily be oriented, provided
the origin coincides with the centre of mass. Let us
define the principal plane, (Ox1x2), as the equatorial
plane of the system.

For a particle placed at a position ~r =
(x1, x2, x3), and moving at a velocity ~v = (v1, v2, v3),
let ~req = (x1, x2) and ~veq = (v1, v2, ) be the related
projections onto the equatorial plane (see Fig. 1).

Fig. 1. Radial (vw) and tangential (vφ) velocity
components on the equatorial plane, (Ox1x2). The
projections onto the equatorial plane of the vector ra-
dius ~r, and the velocity ~v, are denoted by req and veq,
respectively, with regard to a generic particle.
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Cartesian velocity components may be ex-
pressed as the algebraic sum of radial and tangential
velocity projection on the related direction, as:

v1=veq cos(α + φ) = (vw)1 + (vφ)1
=vw cos φ− vφ sin φ ; (67a)

v2=veq sin(α + φ) = (vw)2 + (vφ)2
=vw sin φ + vφ cos φ ; (67b)

conversely, radial and tangential velocity compo-
nents may be expressed as the algebraic sum of
Cartesian velocity projections on the related direc-
tion, as:

vw = veq cosα = (v1)w + (v2)w

= v1 cos φ + v2 sin φ ; (68a)
vφ = veq sinα = (v1)φ + (v2)φ

= −v1 sin φ + v2 cosφ ; (68b)

where (vµ)r = [~v ·−−→vers(µ)]−−→vers(µ) ·−−→vers(xr); (vr)µ =
[~v · −−→vers(xr)]−−→vers(xr) · −−→vers(µ); µ = w, φ; r = 1, 2;
and −−→vers(d) is the unit vector with positive orienta-
tion, along the d direction.

For a generic infinitesimal volume element,
d3S, at the time, t, radial and tangential velocity
components, defined by Eqs. (68), may be consid-
ered as random variables. Owing to a theorem of
statistics4, the expectation values of the related dis-
tributions read:

v∗w = v∗1 cos φ + v∗2 sin φ ; (69a)
v∗φ = −v∗1 sin φ + v∗2 cos φ ; (69b)

similarly, the expectation values of the distributions
depending on the random variables, v2

w and v2
φ, are

found to be:

(v2
w)∗ =

(v2
1)∗ cos2 φ + (v2

2)∗ sin2 φ + 2(v1v2)∗ cos φ sin φ;(70a)
(v2

φ)∗ =

(v2
1)∗ sin2 φ + (v2

2)∗ cos2 φ− 2(v1v2)∗ sin φ cos φ;(70b)

and, using the general definitions expressed by
Eqs. (61) and (62), the related mathematical vari-
ances read:

σ2
vw

= (v2
w)∗ − (v∗w)2

= σ2
v1

cos2 φ + σ2
v2

sin2 φ + 2σv1v2 cosφ sinφ ; (71a)

σ2
vφ

= (v2
φ)∗ − (v∗φ)2

= σ2
v1

sin2 φ + σ2
v2

cos2 φ− 2σv1v2 sinφ cosφ ; (71b)

where the mathematical covariance, σv1v2 , is null
provided the related velocity components, v1 and v2,

are independent. The validity of the relations:

(v∗w)2 + (v∗φ)2 = (v∗1)2 + (v∗2)2 ; (72)

(v2
w)∗ + (v2

φ)∗ = (v2
1)∗ + (v2

2)∗ ; (73)

σ2
vw

+ σ2
vφ

= σ2
v1

+ σ2
v2

; (74)

can be easily checked.
In terms of the related observables, arith-

metic means and empirical variances and covari-
ances, Eqs. (69), (70), and (71) translate into:

vw = v1 cos φ + v2 sin φ ; (75a)
vφ = −v1 sin φ + v2 cos φ ; (75b)

(v2
w) =

(v2
1) cos2 φ + (v2

2) sin2 φ + 2v1v2 cosφ sin φ ; (76a)

(v2
φ) =

(v2
1) sin2 φ + (v2

2) cos2 φ− 2v1v2 sin φ cos φ ; (76b)

σ2
vw

= (v2
w)− (vw)2

= σ2
v1

cos2 φ + σ2
v2

sin2 φ + 2σv1v2 cos φ sin φ ; (77a)

σ2
vφ

= (v2
φ)− (vφ)2

= σ2
v1

sin2 φ + σ2
v2

cos2 φ− 2σv1v2 sin φ cosφ ; (77b)

where the notation of variances and covariances has
been left unchanged, for the sake of simplicity. The
validity of the relations:

(vw)2 + (vφ)2 = (v1)2 + (v2)2 ; (78)

(v2
w) + (v2

φ) = (v2
1) + (v2

2) ; (79)

σ2
vw

+ σ2
vφ

= σ2
v1

+ σ2
v2

; (80)

can also be easily checked.
If velocity components are independent,

σvpvq = δpqσ
2
vp

, Eqs. (77) reduce to:

σ2
ww = σ2

11 cos2 φ + σ2
22 sin2 φ ; (81a)

σ2
φφ = σ2

11 sin2 φ + σ2
22 cos2 φ ; (81b)

where, as already mentioned (see Eq. (66)), σ2
rr =

σvrvr = σ2
vr

to simplify the notation and considering
σrr as velocity dispersions related to random mo-
tions with regard to a generic infinitesimal volume
element, d3S, at the time, t.

4Let m1, m2, ..., mn, be random variables and f1(m1) dm1, f2(m2) dm2, ..., fn(mn) dmn, related distributions, m =∑n

k=1
αkmk an additional random variable, where αk are coefficients, and f(m) dm a related distribution. Then the ex-

pectation value, m∗, can be expressed via the above linear combination of the expectation values, m∗
1, m∗

2, ..., m∗
n, as:

m∗ =
∑n

k=1
αkm∗

k.
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For the whole volume, S, at the time, t, let
us define positive and negative equatorial radial ve-
locity components, vw, as directed outwards and in-
wards, respectively, and positive and negative equa-
torial tangential velocity components, vφ, as related
to counterclockwise and clockwise motion, respec-
tively, around the rotation axis.

Owing to the above mentioned theorem of
statistics, the following relations hold for for expec-
tation values and mathematical variances related to
the distributions depending on radial and tangential
velocity components on the equatorial plane:

v∗w =
1
M

∫ ∫ ∫
[vw(x1, x2, x3, t)]∗ρ(x1, x2, x3, t)

× dx1 dx2 dx3 ; (82a)

v∗φ =
1
M

∫ ∫ ∫
[vφ(x1, x2, x3, t)]∗ρ(x1, x2, x3, t)

× dx1 dx2 dx3 ; (82b)

(v2
w)∗ =

1
M

∫ ∫ ∫
[v2

w(x1, x2, x3, t)]∗ρ(x1, x2, x3, t)

× dx1 dx2 dx3 ; (83a)

(v2
φ)∗ =

1
M

∫ ∫ ∫
[v2

φ(x1, x2, x3, t)]∗ρ(x1, x2, x3, t)

× dx1 dx2 dx3 ; (83b)

σ2
vw

= (v2
w)∗ − (v∗w)2 ; (84a)

σ2
vφ

= (v2
φ)∗ − (v∗φ)2 ; (84b)

where the validity of Eqs. (72), (73), and (74) re-
mains unchanged.

In terms of the related observables, arithmetic
means and empirical variances, Eqs. (82), (83), and
(84), translate into:

vw =
1
M

∫ ∫ ∫
vw(x1, x2, x3, t)ρ(x1, x2, x3, t)

× dx1 dx2 dx3 ; (85a)

vφ =
1
M

∫ ∫ ∫
vφ(x1, x2, x3, t)ρ(x1, x2, x3, t)

× dx1 dx2 dx3 ; (85b)

v2
w =

1
M

∫ ∫ ∫
v2

w(x1, x2, x3, t)ρ(x1, x2, x3, t)

× dx1 dx2 dx3 ; (86a)

v2
φ =

1
M

∫ ∫ ∫
v2

φ(x1, x2, x3, t)]ρ(x1, x2, x3, t)

× dx1 dx2 dx3 ; (86b)

σ2
vw

= σ2
ww = (v2

w)− (vw)2 ; (87a)

σ2
vφ

= σ2
φφ = (v2

φ)− (vφ)2 ; (87b)

where the validity of Eqs. (78), (79), and (80) re-
mains unchanged.

With regard to the angular velocity, Ω, and
the related moment of inertia, I3, the counterparts
of Eqs. (85b) and (86b) read:

Ω =
1
I3

∫ ∫ ∫
Ω(x1, x2, x3, t)wρ(x1, x2, x3, t)

× dx1 dx2 dx3 ; (88)

Ω2 =
1
I3

∫ ∫ ∫
Ω2(x1, x2, x3, t)w2ρ(x1, x2, x3, t)

× dx1 dx2 dx3 ; (89)

σ2
Ω = Ω2 − Ω

2
; (90)

I3 =
∫ ∫ ∫

w2ρ(x1, x2, x3, t) dx1 dx2 dx3 ; (91)

where the angular velocity, Ω, may be conceived as
a figure rotation, in the sense that the mean is null
when performed in a reference frame in rigid rotation
at the same rate. To this respect, particles with dif-
ferent masses must be uniformly distributed within
the region of phase hyperspace accessible to the sys-
tem.

Owing to Eqs. (84b), (89), and (90), the fol-
lowing relation holds:

M(vφ
2 + σ2

φφ) = Mv2
φ = I3Ω2 = I3(Ω

2
+ σ2

Ω) ; (92)

where the mean angular velocity, Ω, and the empir-
ical variance, σ2

Ω, are related to systematic and ran-
dom motions, respectively, around the rotation axis.
Accordingly, Eq. (92) may be splitted into:

Mvφ
2 = I3Ω

2
; (93a)

Mσ2
φφ = I3σ

2
Ω ; (93b)

which express the contribution of systematic and
random motions along the equatorial plane, in terms
of tangential and angular velocities.

The mean radial velocity component, vw, is
related to the motion of the centre of mass along
the equatorial plane. On the other hand, the centre
of mass coincides with the origin of the coordinates,
which implies vw = 0 and, in turn, (v2

w) = σ2
ww.

The mean tangential velocity component, vφ,
and the empirical variance, σ2

φφ, are related to sys-
tematic and random motions, respectively, around
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the rotation axis. The diagonal components of the
kinetic-energy tensor may be expressed in terms of
the above mentioned contributions, as:

Tkk = (Tsys)kk + (Trdm)kk ; (94)

where k = w, φ in the case under discussion, and:

(Tsys)ww = 0 ; (95a)

(Trdm)ww =
1
2
Mσ2

ww ; (95b)

(Tsys)φφ =
1
2
I3Ω

2
; (96a)

(Trdm)φφ =
1
2
I3σ

2
Ω ; (96b)

where the indices, sys and rdm, denote systematic
and random motions, respectively.

The global contribution:

Tφφ =
1
2
I3Ω2 ; (97)

depends only on the mass distribution, via the mo-
ment of inertia, I3, related to the rotation axis, x3,
and the tangential velocity component on the equa-
torial plane, via the rms angular velocity, Ω2, regard-
less of the amount of systematic and random motions
along the direction under discussion (e.g. Meza 2002,
C06).

The contribution of the kinetic-energy tensor
component, Tφφ, to the kinetic-energy tensor com-
ponents, T11 and T22, owing to Eqs. (96) and (97),
is:

(Tφφ)qq =
1
2
IqqΩ2 ; q = 1, 2 ; (98)

[(Tsys)φφ]qq =
1
2
IqqΩ

2
; q = 1, 2 ; (99)

[(Trdm)φφ]qq =
1
2
Iqq(Ω2 − Ω

2
) ; q = 1, 2 ;(100)

Ipq =
∫ ∫ ∫

xpxqρ(x1, x2, x3, t) dx1 dx2 dx3 ;(101)

I3 = I11 + I22 ; (102)

where Ipq is the moment of inertia tensor.
With regard to equatorial radial kinetic-

energy tensor components, the combination of
Eqs. (80), (90), and (93) yields:

σ2
ww = σ2

11 + σ2
22 −

I3

M
(Ω2 − Ω

2
) ; (103)

and the contribution of the kinetic-energy tensor
component Tww to the kinetic-energy tensor com-
ponents T11 and T22 owing to Eqs. (94) and (102),
is:

(Tww)qq =
1
2
Mσ2

qq −
1
2
Iqq(Ω2 −Ω

2
) ; q = 1, 2 ;

(104)

to be used together with Eq. (98).
It is worth noticing that anisotropic random

velocity components distributions, σTT 6= σRR, are
not necessarily related to the shape of the system,
while σWW 6= 2σ33 is (e.g. BT87, Chap. 4, § 3),
where T , R, and W , denote tangential, radial, and
equatorial velocity components, respectively. In fact,
a spherically symmetric mass distribution could, in
principle, allow purely radial or circular orbits.

3.3. Virial equilibrium configurations

The particularization of Eq. (22) to Newto-
nian interaction, χ = −1, after combination with
Eqs. (98) and (104), allows the formulation of the
virial equations for the case under discussion. The
result is:

1
2
Ïqq = IqqΩ

2
+ Mσ2

qq + (Epot)qq ; q = 1, 2 ;(105a)

1
2
Ï33 = Mσ2

33 + (Epot)33 ; (105b)

where v3 = 0, the system centre of mass having been
chosen as origin of the reference frame, and the ten-
sors are diagonal provided the coordinate axes coin-
cide with the principal axes of inertia.

The virial equations of the second order, ex-
pressed by Eq. (22), in particular Eqs. (105), imply
the validity of the following assumptions.

(i) The mechanical system under consid-
eration (in particular a collisionless, self-
gravitating fluid) is isolated (e.g. LL66,
Chap. I, § 5), which implies angular momen-
tum conservation (e.g. LL66, Chap. II, § 9).
(ii) The potential energy is a homogeneous
function of the coordinates with the degree χ
(in particular, χ = −1).
The validity of the further assumption, either

(iii-a) The generic component of the moment
of inertia tensor depends linearly on time, ac-
cording to Eq. (23); or, alternatively:
(iii-b) The first time derivative of the generic
component of the moment of inertia tensor
is a bounded function, according to Eq. (25);
makes Eqs. (105) reduce to:

IqqΩ
2

+ Mσ2
qq + (Epot)qq = 0; q = 1, 2;(106a)

Mσ2
33 + (Epot)33 = 0 ; (106b)

where the variables are to be regarded as
instantaneous or averaged over a sufficiently
long time, depending of whether assumption
(iii-a) or (iii-b), respectively, has been chosen.
A more general formulation of Eqs. (106),

which includes instantaneuos configurations with as-
sumption (iii-b), is:

IqqΩ
2

+ Mζqqσ
2 + (Epot)qq = 0 ; q = 1, 2 ;(107a)

Mζ33σ
2 + (Epot)33 = 0 ; (107b)

σ2 = σ2
11 + σ2

22 + σ2
33 ; (107c)
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ζrr =
(Ẽrdm)rr

Erdm
=

σ̃2
rr

σ2
; r = 1, 2, 3 ; (107d)

ζ11 + ζ22 + ζ33 =
Ẽrdm

Erdm
=

σ̃2

σ2
= ζ ; (107e)

where ζrr may be understood as anisotropy parame-
ters (CM05, C06), Erdm is the random kinetic energy,
and Ẽrdm is the effective random kinetic energy i.e.
the right amount needed for an instantaneous con-
figuration to satisfy Eqs. (106). For further details
refer to Appendix B. Generalized anisotropy param-
eters smaller or larger than ζ/3 imply, respectively,
lack or excess of random motions along the related
direction. On the other hand, the ratios:

ζ̃rr =
(Ẽrdm)rr

Ẽrdm

=
ζrr

ζ
; r = 1, 2, 3 ; (108a)

ζ̃11 + ζ̃22 + ζ̃33 = 1 ; (108b)

may be understood as effective anisotropy parame-
ters (CM05, C06).

The parameter ζ may be conceived as a virial
index, where ζ = 1 corresponds to null virial excess,
2∆Erdm = 2(Ẽrdm−Erdm), which does not necessar-
ily imply a relaxed configuration5, ζ > 1 to positive
virial excess, and ζ < 1 to negative virial excess.
The special case, ζrr = ζ̃rr, ζ = 1, makes Eqs. (107)
reduce to (106).

In summary, Eqs. (106) hold provided in-
stantaneous velocity dispersions, (σ2

11, σ
2
22, σ

2
33),

are replaced by effective velocity dispersions,
(ζ11σ

2, ζ22σ
2, ζ33σ

2) = (σ̃2
11, σ̃

2
22, σ̃

2
33), related to an

equilibrium or configuration averaged over a suffi-
ciently long time. In other words, Eqs. (106) repre-
sent the virial equilibrium configuration of a mass
distribution which coincides with its counterpart re-
lated to a selected instantaneous configuration of the
system under consideration.

For the sake of simplicity, let us define ideal,
self-gravitating fluids, rotating around an axis, a3,
for which Eqs. (107) hold i.e. the assumptions (i),
(ii), and (iii) above are valid, as R3 fluids6.

The combination of Eqs. (107a) and (107b)
yields:

IqqΩ
2 − ζqq

ζ33
(Epot)33 + (Epot)qq = 0 ; q = 1, 2 ;

(109)
to get further insight, let us express the self potential-
energy tensor, (Epot)rr, and the moment of inertia
tensor, Irr, in terms of dimensionless tensors, Prr
and Irr, respectively, as:

(Epot)rr = −GM2

a
Prr ; r = 1, 2, 3 ; (110a)

(Epot) = −GM2

a
P ; (110b)

Iqq = Ma2Iqq ; q = 1, 2 ; (111a)

I3 = Ma2I3 ; (111b)

a =
(

S

2π

)1/3

; (112)

furthermore, let us define the rotation parameter:

υ =
a3Ω

2

GM
=

Ω
2

2πGρ
; (113)

where ρ = M/S is the mean density of the system.
In the special case of solid-body rotation (Ω = Ω),
Eq. (113) reduces to a notation used for polytropes
(e.g. Jeans 1929, Chap. IX, § 232; Chandrasekhar
and Leboviz 1962), and in the limit of ellipsoidal ho-
mogeneous configurations (ρ = ρ), Eq. (113) reduces
to a notation used for MacLaurin spheroids and Ja-
cobi ellipsoids (e.g. Jeans 1929, Chap. VIII, §§ 189-
193; C69, Chap. 5, § 32, Chap. 6, § 39).

Owing to Eqs. (110a), (111a) and (112),
Eq. (109) may be formulated in terms of dimension-
less parameters, as:

(ζ33Pqq − ζqqP33)− υζ33Iqq = 0 ; q = 1, 2 ;
(114)

which admits real solutions provided the inequality:

ζqq

ζ33
≤ Pqq

P33
; q = 1, 2 ; (115)

is satisfied, and it is the natural extension to R3
fluids of its counterparts related to axisymmetric,
relaxed mass distributions (Wiegandt 1982a,b) and
homeoidally striated ellipsoids (C06). Imaginary so-
lutions correspond to imaginary rotation parameters
i.e. imaginary rotation, as explained in the next sec-
tion.

After some algebra the combination of
Eqs. (114) yields:

I22(ζ33P11−ζ11P33) = I11(ζ33P22−ζ22P33) ; (116)

or equivalently:

ζ33(I22P11−I11P22) = P33(I22ζ11−I11ζ22) ; (117)

which represent alternative expressions of the con-
straint related to virial equilibrium.

5For instance, a homogeneous sphere undergoing coherent oscillations exhibits ζ > 1 at expansion turnover and ζ < 1 at
contraction turnover. Then there necessarily exists a configuration where ζ = 1 which, on the other hand, is unrelaxed.

6As explained earlier, the term ”R3” stands for ”ideal, self-gravitating fluids, rotating around a principal axis of inertia, let it
be x3”. In the general case of R fluids, (systematic) rotation may occur also around the remaining principal axes of inertia,
x2 and/or x1.
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3.4. Axisymmetric and triaxial
configurations

An explicit expression for the rotation param-
eter υ can be derived from Eqs. (114), as:

υ =
ζ33Pqq − ζqqP33

ζ33Iqq
; q = 1, 2 ; (118)

which, in turn, allows an explicit expression of
anisotropy parameter ratios ζqq/ζpp as:

ζqq

ζ33
=
Pqq

P33

[
1− υ

Iqq

Pqq

]
; q = 1, 2 ; (119)

ζ11

ζ22
=
P11 − υI11

P22 − υI22
; (120)

and the combination of Eqs. (107e) and (119) yields:

ζ33

ζ
=

P33

P − υI3
; (121)

which provides an alternative expression for
Eqs. (118):

υ =
ζ33P − ζP33

ζ33I3
; (122)

that is equivalent to Eq. (114), and then admits real
solutions provided inequality (115) is satisfied.

Finally, Eqs. (114) may be combined as:

I11

I22
=

ζ33P11 − ζ11P33

ζ33P22 − ζ22P33
; (123)

where it can be seen that Eqs. (120) and (123)
are changed into each other, replacing the terms,
P33ζqq/ζ33, by the terms, υIqq, and vice versa. The
above results may be reduced to a single statement.

Theorem 1. Given an R3 fluid, the relation:

X11

X22
=
P11 − Y11

P22 − Y22
;

Xqq =
ζqq

ζ33
P33 , υIqq ; q = 1, 2 ;

Yqq = υIqq ,
ζqq

ζ33
P33 ; q = 1, 2 ;

is symmetric with respect to Xqq and Yqq, the
former tensor being related to anisotropic ran-
dom velocity distribution, and the latter to
systematic rotation around the axis x3.
In the special case of axisymmetric config-

urations, the dimensionless factors appearing in
the expression of the self potential-energy tensor,
Eqs. (110a), and the moment of inertia, Eqs. (111a),
do coincide with regard to equatorial axes, P11 = P22

and I11 = I22, respectively, which necessarily imply
ζ11 = ζ22, owing to Eq. (123).

In the general case of triaxial configurations,
the contrary holds, P11 6= P22 and I11 6= I22, and the
equality, ζ11 = ζ22, via Eq. (120), implies the validity
of the relation:

υ =
P11 −P22

I11 − I22
; (124)

in the opposite case, the random velocity distribu-
tion along the equatorial plane7 is anisotropic i.e.
ζ11 6= ζ22. The related degeneracy can be removed
using an additional condition, as it will be shown in
the next section.

The above results may be reduced to a single
statement.

Theorem 2. Isotropic random velocity dis-
tribution along the equatorial plane, ζ11 = ζ22,
makes a necessary condition for R3 fluids to be
symmetric with respect to the rotation axis,
x3.

4. IMAGINARY ROTATION

A unified theory of systematic and random
motions is possible, if one introduces imaginary rota-
tion. It was shown above that Eq. (114), or equiva-
lently one among (118), (122), admits real solutions
provided inequality (115) is satisfied. If otherwise,
the rotation parameter, υ, has necessarily to be neg-
ative, which implies, via Eq. (113), an imaginary fig-
ure rotation, iΩ, where i is the imaginary unit. Ac-
cordingly, the related centrifugal potential takes the
general expression:

T (x1, x2, x3, t) =
1
2

Sgn

(Pqq

P33
− ζqq

ζ33

)

×[Ω(x1, x2, x3, t)]2w2 ; w2 = x2
1 + x2

2 ; (125)

where Sgn is the sign function, Sgn(∓|x|) = ∓1,
Sgn(0) = 0. The centrifugal force, ∂T /∂w, is posi-
tive or negative depending on whether real or imag-
inary rotation occurs, respectively. Then the net ef-
fect of real rotation is flattening, while that of imag-
inary rotation is elongation, with respect to the ro-
tation axis (Caimmi 1996b, C06).

To get further insight, let us particularize
Eq. (114) to the special case of null rotation (υ = 0).
The result is:

ζqq

ζ33
=
Pqq

P33
; υ = 0 ; q = 1, 2 ; (126)

where the right-hand side, via Eqs. (31) and (110a),
depends on the mass distribution only. Accordingly,
the net effect of positive (ζqq/ζ33 > 0) or negative
(ζqq/ζ33 < 0) random motion excess along the equa-
torial plane is flattening (Pqq > P33) or elongation

7Throughout this paper, ”along the equatorial plane” has to be understood as ”along any direction parallel to the equatorial
plane”.
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(Pqq < P33), respectively. In what follows, it shall
be understood that random motion excess is related
to the equatorial plane.

4.1. Random motion excess and rotation

In the limit of isotropic random velocity distri-
bution, ζ11 = ζ22 = ζ33 = ζ/3, Eqs. (118) and (122)
reduce to:

υiso =
Pqq − P33

Iqq
; q = 1, 2 ; (127)

υiso =
P − 3P33

I3
; (128)

where the index, iso, emphasises the isotropic ran-
dom velocity distribution.

Accordingly, Eqs. (118) and (122) may be ex-
pressed as:

υ = υiso − υani ; (129)

υani =
(

ζqq

ζ33
− 1

) P33

Iqq
; q = 1, 2 ; (130)

υani =
(

ζ

ζ33
− 3

) P33

I3
; (131)

where υani ≥ 0 for oblate-like configurations,
ζqq/ζ33 ≥ 1; υani ≤ 0 for prolate-like configurations,
ζqq/ζ33 ≤ 1; and the index, ani, means contribution
from random motion excess which, in general, makes
for an anisotropic random velocity distribution. Ac-
cordingly, positive or negative random motion excess
is related to real or imaginary rotation respectively.

Let us rewrite Eq. (129) as:

υiso = υ + υani ; (132)

which, owing to Eq. (113), is equivalent to:

Ω
2

iso = Ω
2

+ Sgn

(
ζ

ζ33
− 3

)
Ω

2

ani ; (133)

where positive and negative Sgn values correspond
to real and imaginary rotation, respectively. Then
the effect of random motion excess on the shape of
the system is virtually indistinguishable from the ef-
fect of additional figure rotation. The above results
may be reduced to a single statement.

Theorem 3. Given an R3 fluid, the effect of
(positive or negative) random motion excess
is equivalent to an additional (real or imagi-

nary) figure rotation, Sgn(ζ/ζ33−3)Ω
2

ani, with
regard to an adjoint configuration where the
random velocity distribution is isotropic.
Accordingly, an R3 fluid with assigned system-

atic rotation and random velocity distribution, as far
as shape is concerned, is virtually indistinguishable
from an adjoint configuration of equal density profile,
isotropic random velocity distribution, and figure ro-
tation deduced from Eq. (133).

4.2. Axisymmetric and triaxial
configurations

The combination of alternative expressions for
the rotation parameter, υiso, defined by Eqs. (127),
yields:

I11P22 − I22P11 = P33(I11 − I22) ; (134)

which, for axisymmetric configurations, i.e. for I11 =
I22 and P11 = P22, reduces to an indeterminate
form, 0 = 0.

The combination of alternative expressions for
the rotation parameter, υani, defined by Eq. (129),
yields:

I11ζ22 − I22ζ11 = ζ33(I11 − I22) ; (135)

which, for isotropic random velocity distributions,
reduces to an indeterminate form, 0 = 0. In addi-
tion, axisymmetric configurations (I11 = I22) neces-
sarily imply isotropic random velocity distributions
along the equatorial plane, ζ11 = ζ22.

The combination of Eqs. (107e) and (135)
yields:

ζqq =
ζIqq − ζ33(2Iqq − Ipp)

I3
;

q = 1, 2 ; p = 2, 1 ; (136)

which, for axisymmetric configurations (I11 = I22 =
I3/2) reduces to :

ζqq =
Iqq

I3
(ζ−ζ33) =

ζ − ζ33

2
; q = 1, 2 ; (137)

and the special case, ζ33 = ζ/3, reads ζ11 = ζ22 =
ζ/3.

The limiting configuration, ζqq = 0, via
Eqs. (134), necessarily implies Ipp ≤ Iqq, owing to
ζpp ≥ 0, q = 1, 2, p = 2, 1, and Eq. (136) reduces to:

ζIqq − ζ33(2Iqq − Ipp) = 0 ; q = 1, 2 ; p = 2, 1 ;
(138)

which, owing to Eq. (107e), is equivalent to:

Ipp

Iqq
=

ζ33 − ζpp

ζ33
=

2ζ33 − ζ

ζ33
; (139a)

ζqq = 0 ; q = 1, 2 ; p = 2, 1 ; (139b)

where Iqq/Ipp ≥ 1 implies ζ33 ≥ ζpp and ζ33 ≥ ζ/2.
The above results may be reduced to the following
statements.

Theorem 4. Given an R3 fluid, the aniso-
tropy parameters along the equatorial plane,
ζqq, q = 1, 2, depend on the diagonal compo-
nents of the dimensionless moment of inertia
tensor, Iqq, q = 1, 2, and the related expres-
sions coincide, ζ11 = ζ22, in the limit of ax-
isymmetric configurations, I11 = I22.
Theorem 5. Given an R3 fluid, a necessary

and sufficient condition for isotropic random
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velocity distribution is that the anisotropy pa-
rameter along the rotation axis attains the
value, ζ33 = 1/3.
Theorem 6. Given a sequence of R3 flu-

ids, the ending point occurs when the third
diagonal component of the dimensionless self
potential-energy tensor is zero, P33 = 0,
and/or the generalized anisotropy parameter
related to the major equatorial axis is zero,
ζ11 = 0, which is equivalent to I22/I11 =
(2 − ζ/ζ33)1/2. The related value of the ro-
tation parameter is υ = Pqq/Iqq, q = 1, 2, in-
dependent of anisotropy parameters. The spe-
cial case of dynamical (or hydrostatic) equilib-
rium, ζ = 1, implies centrifugal support along
the major equatorial axis, provided ζ11 = 0.
Accordingly, for the R3 fluids, the anisotropy

parameters along the equatorial plane, ζ11 and ζ22,
cannot be arbitrarily chosen, but depend on the di-
mensionless moment of inertia tensor diagonal com-
ponents, I11 and I22, according to Eqs. (136). On
the other hand, the knowledge of the dimensionless
moment of inertia tensor components, I11 and I22,
the dimensionless self potential-energy tensor com-
ponents, P11, P22 and P33, together with the rotation
parameter, υ, allows the determination of the rota-
tion parameter, υani, via Eqs. (127), (128), (129), and
then the ratios, ζqq/ζ33, ζ33/ζ, via Eqs. (130), (131),
respectively, or the anisotropy parameter along the
rotation axis, ζ33, provided the virial index, ζ, de-
fined by Eq. (107e), is assigned.

In conclusion, for the R3 fluids defined
by specified dimensionless moment of inertia ten-
sor components, I11 and I22, dimensionless self
potential-energy tensor components, P11, P22 and
P33, rotation parameter, υ, and virial index, ζ, the
anisotropy parameters, ζ11, ζ22, ζ33, cannot be ar-
bitrarily chosen, but must be determined as shown
above.

4.3. Sequences of virial equilibrium
configurations

For the R3 fluids, it has been shown above
that corresponding configurations are character-
ized by (i) centrifugal potential, Tiso(x1, x2, x3) =
T (x1, x2, x3) + Tani(x1, x2, x3), or Ω

2

iso(x1, x2, x3) =
Ω

2
(x1, x2, x3) + Sgn(ζ/ζ33 − 3)Ω

2

ani(x1, x2, x3),
Eq. (133); and (ii) isotropic random velocity dis-
tribution. Owing to Theorem 3, a sequence of R3
fluids coincides with the sequence of adjoint configu-
rations. Given an R3 fluid with fixed components of
the dimensionless self potential-energy tensor, P11,P22, P33, the dimensionless moment of inertia ten-
sor, I11, I22, the rotation parameter, υ, and virial
index, ζ, the anisotropy parameters, ζ11, ζ22, ζ33, are
determined via Eqs. (127)-(131) and (136). Negative
values of the rotation parameter, υiso, extend the se-
quence of axisymmetric configurations to imaginary

rotation, i.e. prolate configurations where the major
axis coincides with the rotation axis.

As in sequences of homeoidally striated Jacobi
ellipsoids (C06), the meridional axis ratio lies in the
range, 0 ≤ ε31 ≤ 1, for real rotation, and ε31 > 1,
for imaginary rotation, also in sequences of R3 flu-
ids, where a bifurcation point from axisymmetric to
triaxial configurations is expected to occur when the
meridional axis ratio attains a threshold value. The
location of an R3 fluid in a selected sequence allows
the knowledge of a number of physical parameters,
such as shape, angular momentum, moment of iner-
tia tensor, self potential-energy tensor, and kinetic-
energy tensor.

Once more owing to Theorem 3, the bifurca-
tion point of a sequence of R3 fluids coincides with
its counterpart along the sequence of adjoint config-
urations. Aiming at finding a necessary condition for
the occurrence of a bifurcation point, let us equate
the alternative expressions of Eqs. (118). The result
is:

P11

I11
− ζ11

ζ33

P33

I11
=
P22

I22
− ζ22

ζ33

P33

I22
; (140)

where the anisotropy parameter ratios ζqq/ζ33, q =
1, 2, may be deduced from Eqs. (136). After some
algebra, Eq. (140) becomes:

I11P22 − I22P11

I11 − I22
= P33 ; (141)

and the occurrence of a bifurcation point has neces-
sarily to satisfy the relation:

lim
ε21→1

I11P22 − I22P11

I11 − I22
= P33 ; (142)

where ε21 = a2/a1 is the ratio of two generic equa-
torial (perpendicular) radii, and ε21 → 1 implies
I22 → I11, P22 → P11. Then Eq. (142) is a necessary
condition for the existence of a bifurcation point, as
it selects the sole axisymmetric configuration which
satisfies Eq. (141), regardless from the values of the
anisotropy parameters, ζrr, r = 1, 2, 3. The above
results may be reduced to a single statement.

Theorem 7. Given a sequence of R3 flu-
ids, a necessary condition for the existence
of a bifurcation point from axisymmetric to
triaxial configurations, is independent of the
anisotropy parameters, ζrr, r = 1, 2, 3, and co-
incides with its counterpart related to the se-
quence of adjoint configurations with isotropic
random velocity distribution.
Sequences of R3 fluids with assigned density

profiles, can be deduced from the knowledge of the
rotation parameters, υiso(ε31) and υani(ε31, ζ̃33), as
functions of the meridional axis ratio, ε31 = a3/a1,
and the effective anisotropy parameter, ζ̃33, as rep-
resented in Figs. 2 and 3, respectively8.

8Strictly speaking, the curves plotted in Figs. 2, 3, and 4 are related to the special case of homeoidally striated Jacobi ellipsoids
(C06), but can be taken as illustrative for R3 fluids.
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A hypothetical sequence of axisymmetric R3
fluids, extended to the case of imaginary rotation,
is shown in Fig. 2. Hypothetical dependences of
the rotation parameter, υani, on the meridional axis
ratio, ε31, and the effective anisotropy parameter,
ζ̃33 = ζ33/ζ (labelled on each curve), are shown in
Fig. 3.

Fig. 2. A hypothetical sequence of axisymmetric R3
fluids, from the starting point (square) to the bifurca-
tion point (triangle), and related triaxial R3 fluids,
from the starting point (triangle) to the bifurcation
point (Greek cross), extended to the case of imagi-
nary rotation (negative values of the rotation param-
eter, υ). In any case, the random velocity distribu-
tion is isotropic. Both sequences are continued in the
region of instability. The horizontal line, υiso = 0, is
the locus of non rotating and/or zero volume con-
figurations. The vertical line, ε31 = 1, is the locus
of round (a1 = a2 = a3) configurations. The above
mentioned lines divide the non negative semiplane,
ε31 ≥ 0, into four regions (from top left in clockwise
sense): A - oblate-like shapes with real rotation; B
- prolate-like shapes with real rotation; C - prolate-
like shapes with imaginary rotation; D - oblate-like
shapes with imaginary rotation. Regions B and D
are forbidden to sequences of R3 fluids.

With regard to a fixed effective anisotropy pa-
rameter, the related sequence starts from a nonrotat-
ing configuration, υ = 0, i.e. υani = υiso, and ends
at a configuration where ε31 = 0 and/or ζ̃11 = 0.
A hypothetical locus of the ending points related
to the latter alternative, is represented as a long-
dashed curve. The locus of nonrotating configura-
tions (short-dashed lines) coincides with the curves
represented in Fig. 2. No sequence can be continued
on the right, as imaginary rotation i.e. larger ζ̃33
would be needed and a different sequence should be
considered. The effect of positive (ζ̃33 < 1/3) or neg-
ative (ζ̃33 > 1/3) random motion excess is equivalent
to an additional real or imaginary rotation, respec-
tively. The horizontal non negative semiaxis, ε31 ≥ 0,

υani = 0, is the locus of configurations with isotropic
random velocity distribution, ζ̃33 = 1/3. The ver-
tical straight line, ε31 = 1, is the locus of round
(a1 = a2 = a3) configurations.

Fig. 3. A hypothethical dependence of the rota-
tion parameter, υani, related to random motion ex-
cess, on the meridional axis ratio, ε31, with regard
to R3 fluids. Each curve is labelled by the corre-
sponding value of the effective anisotropy parame-
ter, ζ̃33 = ζ33/ζ. The horizontal non negative semi-
axis, ε31 ≥ 0, υani = 0, is the locus of configu-
rations with isotropic random velocity distribution,
ζ̃33 = 1/3. The vertical straight line, ε31 = 1, is the
locus of round (a1 = a2 = a3) configurations. The
generic sequence starts from a non rotating config-
uration (short-dashed lines) and ends at a configu-
ration where either ε31 = 0 and/or ζ̃11 = 0 (long-
dashed line). The regions above the upper short-
dashed curve and below the long-dashed curve, re-
spectively, are forbidden to R3 fluids. The non nega-
tive vertical semiaxis, υani ≥ 0, ε31 = 0, corresponds
to flat (ζ̃33 = 0) configurations with no figure rota-
tion. The curves are symmetric with respect to the
horizontal axis, until the limiting curve, ζ̃33 = ζ̃ = 1,
is reached. The limiting configuration where ζ̃11 = 0,
is marked by a square: no configuration in virial
equilibrium is allowed on the left, as it would im-
ply ζ̃11 < 0. No configuration is allowed on the right
of the starting point, as it would imply υ < 0.

With regard to real rotation, the ending con-
figuration (ε31 = 0 and/or ζ̃11 = 0) is marked by
a square. Configurations on the left are forbidden,
as they would imply negative random energy ten-
sor component, (Erdm)11 < 0, to satisfy the virial
equation (107a), which requires imaginary rotation
around major equatorial axis, i.e. systematic mo-
tions other than rotation around the minor axis.

With regard to imaginary rotation, no ending
point occurs and the system is allowed to attain neg-
ative infinite rotation parameter, υiso → −∞, and
infinite meridional axis ratio, ε31 → +∞. The re-
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lated configuration is either a spindle (a1 = a2 = 0)
or an infinitely high cylinder (a1 = a2 < a3 → +∞).

Further inspection of Fig. 3. shows additional
features, namely: (i) zero left first derivatives on each
sequence at bifurcation point (not marked therein for
sake of clarity), and (ii) occurrence of symmetric se-
quences with respect to the horizontal axis (including
also forbidden configurations). For additional con-
siderations on (i), see C06 (nothing changes with re-
spect to the special case investigated therein). The
above results may be reduced to a single statement.

Theorem 8. Given a sequence of R3 flu-
ids, the contribution of random motion excess,
υani, to the rotation parameter, υiso, has a zero
left first derivative at the bifurcation point,
[ dυani/ dε31](ε31)−bif

= 0.

The occurrence of symmetric sequences with
respect to the horizontal axis, is deduced from
Eq. (131), using the condition:

(ζ̃+
33)

−1 − 3 = −(ζ̃−33)
−1 + 3 ; (143)

where ζ̃∓33 = ζ∓33/ζ is related to curves character-
ized by negative (ζ̃33 = ζ̃−33 ≥ 1/3) and positive
(ζ̃33 = ζ̃+

33 ≤ 1/3) values, respectively, of the rotation
parameter, υani, see Fig. 3. Couples of symmetric
sequences (including forbidden configurations) start
from (ζ̃−33, ζ̃

+
33) = (1/3, 1/3), where each curve coin-

cides with the other, and end at (1,1/5). Sequences
in the range, 0 ≤ ζ̃+

33 < 1/5, have no symmetric
counterpart.

Let a point, P[ε31, υiso], be fixed on a se-
quence of axisymmetric R3 fluids, and the dimen-
sionless moment of inertia tensor components, I11

and I22, be determined by use of Eqs. (127) and
(128). Let a point, P′(ε31, υani), be fixed on the
plane, (O ε31 υani), and the effective anisotropy pa-
rameters, ζ̃11, ζ̃22, ζ̃33, be determined by use of
Eqs. (130), (131), (136). Finally, let the rotation pa-
rameter, υ, be determined by use of Eq. (129). Fol-
lowing the above procedure, sequences of R3 fluids
may be generated. For assigned density profiles and
systematic rotation velocity fields, there are three in-
dependent parameters, which may be chosen as two
axis ratios, ε21, ε31, and one effective anisotropy pa-
rameter, ζ̃33.

In the (Oε31υ) plane (Fig. 3.), each sequence
starts from the intersection between the curves, υ =
[υ(ε31)]iso (short-dashed), υ = [υ(ε31; ζ̃33)]ani (full),
and ends at the intersection between the curves,
υ = υ(ε31; ζ̃11 = 0) (long-dashed), υ = [υ(ε31; ζ̃33)]ani

(full).
Hypothetical dependences of the rotation pa-

rameter, υ, on the meridional axis ratio, ε31, and the
effective anisotropy parameter, ζ̃33 = ζ33/ζ (same
cases as in Fig. 3.), are shown in Fig. 4.

Fig. 4. A hypothethical dependence of the rota-
tion parameter, υ, related to systematic rotation, on
the meridional axis ratio, ε31, with regard to R3 flu-
ids. Each curve is labelled by the value of the ef-
fective anisotropy parameter, ζ̃33 = ζ33/ζ, except
the lowermost two, where ζ̃33 = 2/9 and 1/5, re-
spectively. The dotted vertical straight lines denote
a hypothetical bifurcation point (left) and the round
(a1 = a2 = a3) configuration. The generic sequence
starts from a non rotating configuration on the hori-
zontal axis and ends at a configuration where ε31 = 0
and/or ζ̃11 = 0 (long-dashed line), denoted by a
square. The continuation on the left of the ending
point, where ζ̃11 < 0, 1/2 < ζ̃33 ≤ 1, is also shown.
The initial configuration, related to ζ̃33 = 1, corre-
sponds to 0 = a1 = a2 < a3 or a1 = a2 < a3 → +∞,
which is equivalent to ε31 → +∞.

A hypothetical locus of the ending points re-
lated to ζ̃11 = 0 is represented as a long-dashed
curve, corresponding to 1/2 < ζ̃33 ≤ 1. The contin-
uation of a generic sequence on the left of the long-
dashed curve would imply ζ̃11 < 0 or ε31 < 0. The
ending point of sequences, related to 0 ≤ ζ̃33 < 1/2,
coincides with the origin. The initial configuration,
related to ζ̃33 = 1, corresponds to 0 = a1 = a2 < a3
or a1 = a2 < a3 → +∞, which is equivalent to
ε31 → +∞.

4.4. A special case: homeoidally striated Ja-
cobi ellipsoids

Homeoidally striated Jacobi ellipsoids are a
special case of R3 fluids, for which the results are
already known (CM05, C06). The particularization
of the current theory to homeoidally striated Jacobi
ellipsoids makes useful check. In the case under dis-
cussion, Eqs. (110a) and (112) reduce to (e.g. CM05,
C06):

(Epot)rr = −GM2

a1
νselεr2εr3Ar ; r = 1, 2, 3 ; (144)
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Prr =
(

2
3

)1/3

νsel(ε21ε31)1/3εr2εr3Ar ; (145)

a =
(

2
3

)1/3

a1(ε21ε31)1/3 ; (146)

where νsel is a profile factor, i.e. depends only on
the radial density profile, Ar, r = 1, 2, 3, are shape
factors, i.e. depend on the axis ratios only, and ar,
r = 1, 2, 3, are the semiaxes of the ellipsoidal bound-
ary. The dimensionless density profile may be repre-
sented as:

ρ = ρ0f(ξ) ; f(1) = 1 ; ρ0 = ρ(1) ; (147a)

ξ =
r

r0
; 0 ≤ ξ ≤ Ξ ; Ξ =

R

r0
; (147b)

where ρ0, r0, are a scaling density and a scaling ra-
dius, respectively, with respect to a reference isopy-
cnic surface, while Ξ = Ξ(R, θ, φ), and R are related
to the truncation isopycnic surface.

The mass, M , and the moment of inertia ten-
sor, Ipq, are (e.g. CM05):

M = νmasM0 ; (148)
Ipq = δpqνinrMa2

p ; (149)

where M0 is the mass of a homogeneous ellipsoid with
same density and boundary as the reference isopyc-
nic surface, whereas νmas and νinr are profile factors.

The combination of Eqs. (102), (111a), (112),
(147b), and (149) yields:

Iqq =
Iqq

Ma2
= νinr

[
2
3
ε21ε31

]−2/3

ε2q1 ; (150)

I3 = I11 + I22 = νinr

[
2
3
ε21ε31

]−2/3

(1 + ε221); (151)

which allows the particularization of the general re-
sults pertaining to R3 fluids, to homeoidally striated
Jacobi ellipsoids.

Using Eqs. (118), (145), (150), and (151), and
performing some algebra, the rotation parameter υ
takes the expression:

υ =
2
3

νsel

νinr

ζ33Aq − ζqqε
2
3qA3

ζ33
; q = 1, 2 . (152)

Let us define a normalized rotation parameter:

υN =
3
2

νinr

νsel
υ ; (153)

and re-write Eq. (152) as:

υN =
ζ33Aq − ζqqε

2
3qA3

ζ33
; q = 1, 2 ; (154)

which, in spite of a different definition of the rota-
tion parameter, υ, coincides with a previously known
result (C06), i.e. υN = (υN)C06.

Using Eqs. (119), (146), (150), the anisotropy
parameter ratio, ζqq/ζ33, assumes the form:

ζqq

ζ33
= ε2q3

Aq

A3

(
1− υN

Aq

)
; q = 1, 2 ; (155)

which, keeping in mind a different definition of
the rotation parameter, can be shown to coincide
with a previously known result (C06). In addition,
Eqs. (155) reveal that:

ζ22

ζ11
= ε221

A2 − υN

A1 − υN
; (156)

which also has necessarily to coincide with a previ-
ously known result (C06).

Using Eqs. (122), (146), (151), the alternative
expression of the rotation parameter, υ, takes the
form:

υN =
ζ33(A1 + ε221A2 + ε231A3)− ζε231A3

(1 + ε221)ζ33
; (157)

which, in spite of a different definition of the rota-
tion parameter, υ, coincides with a previously known
result (C06) i.e. υN = (υN)C06.

Using Eqs. (123), (145), (151), the dimen-
sionless moment of inertia tensor component ratio,
I22/I11, becomes:

I22

I11
= ε221 =

ζ33ε
2
21A2 − ζ22ε

2
31A3

ζ33A1 − ζ11ε231A3
; (158)

which, can be shown to coincide with a previously
known result (C06; the counterpart of I22/I11 is
R22/R11 therein).

Using Eqs. (124), (145), (150), (153), the rota-
tion parameter, υ, related to isotropic random veloc-
ity distribution along the equatorial plane, ζ11 = ζ22,
takes the form:

υN =
A1 − ε221A2

1− ε221
; (159)

which, can be shown to coincide with a previously
known result (C06).

The above results hold, in particular, for
isotropic random velocity distributions (ζ11 = ζ22 =
ζ33 = ζ/3), which implies that the expressions
of the rotation parameters, υiso and υani, via
Eq. (132), must necessarily coincide with their pre-
viously known counterparts (C06).

Using Eqs. (136), (150), (151), the anisotropy
parameters along the equatorial plane, ζqq, q = 1, 2,
become:

ζqq =
ζε2q1 − ζ33(2ε2q1 − ε22q)

1 + ε221
; q = 1, 2 ; (160)

which coincide with previously known results (C06),
particular for axisymmetric configurations (ε21 = 1).

29



R. CAIMMI

Using Eqs. (139) and (158), the condition for
the occurrence of the ending configuration, related
to ζ11 = 0, takes the form:

ε221 =
ζ33 − ζ22

ζ33
=

2ζ33 − ζ

ζ33
; ζ11 = 0 ; (161)

which coincides with a previously known result
(C06).

Using Eqs. (141), (145), (150), a general rela-
tion between dimensionless self potential-energy ten-
sor components and dimensionless moment of inertia
tensor components, takes the form:

ε221(A2 −A1)
(1− ε221)

= ε231A3 ; (162)

which coincides with a previously known result
(Caimmi 1996a, C06). Accordingly, a necessary
condition for the occurrence of a bifurcation point,
Eq. (142), reduces to:

lim
ε21→1

ε221(A2 −A1)
1− ε221

= ε231A3 ; (163)

which also coincides with a previously known result
(Caimmi 1996a, C06).

5. CONCLUSION

The current paper was aimed at getting more
insight on three main points concerning large-scale
astrophysical systems, namely: (i) formulation of
tensor virial equations from the standpoint of an-
alytical mechanics; (ii) investigation on the role of
systematic and random motions with respect to equi-
librium configurations; (iii) extent to which system-
atic and random motions are equivalent in flattening
or elongating the shape of a mass distribution.

The tensor virial equations were formulated
regardless of the nature of the system and its con-
stituents, by generalizing and extending the proce-
dure used for the scalar virial equations, in pres-
ence of discrete subunits (Landau and Lifchitz 1966,
Chap. II, § 10). In particular, the self potential-
energy tensor was shown to be symmetric with re-
spect to the indices, (Epot)pq = (Epot)qp. Then the
results were extended to continuous mass distribu-
tions.

The role of systematic and random motions
in collisionless, ideal, self-gravitating fluids was anal-
ysed in detail including radial and tangential velocity
dispersions on the equatorial plane, and the related
mean angular velocity, Ω, was conceived as a figure
rotation.

R3 fluids were defined as ideal, self-gravitating
fluids in virial equilibrium, with systematic rotation
around a principal axis of inertia, taken to be x3.
The related virial equations have been written in

terms of the moment of inertia tensor, Ipq, the self
potential-energy tensor, (Epot)pq, and the general-
ized anisotropy tensor, ζpq (CM05, C06). Additional
effort was devoted to the investigation of the prop-
erties of axisymmetric and triaxial configurations.

A unified theory of systematic and random
motions was developed for R3 fluids, taking into con-
sideration imaginary rotation (Caimmi 1996b, C06),
and a number of theorems previously stated for
homeoidally striated Jacobi ellipsoids (C06) were ex-
tended to the more general case of R3 fluids. The
effect of random motion excess was shown to be
equivalent to an additional real or imaginary rota-
tion, inducing flattening (along the equatorial plane)
or elongation (along the rotation axis), respectively.
Then it was realized that a R3 fluid always admits an
adjoint configuration with isotropic random velocity
distribution.

In addition, further constraints were estab-
lished on the amount of random velocity anisotropy
along the principal axes, for triaxial configurations.
A necessary condition was formulated for the occur-
rence of bifurcation points from axisymmetric to tri-
axial configurations in virial equilibrium, which is
independent of the anisotropy parameters.

The particularization to the special case of
homeoidally striated Jacobi ellipsoid was given, and
some previously known results (C06) were repro-
duced.

APPENDIX

A. Tensor potentials and potential-energy
tensors

For reasons of simplicity (integrals are easier
than summations to be calculated), let us consider
a continuous distribution of matter, where volume
elements, ∆S, interact with one another according
to their charge density, ρχ = ∆φχ/∆S, with ∆φχ

the charge within ∆S. The intention is that the re-
sults found in this section can be extended to discrete
mass distributions, using summations instead of in-
tegrals. Let (O x1 x2 x3) be a reference frame where
the origin coincides with the centre of mass.

The effect of the interaction on an infinitesi-
mal volume element, d3S = dx1 dx2 dx3, due to a
charge distribution of density, ρχ(x1, x2, x3), is de-
termined by the potential:

V(x1, x2, x3) = Gχ

∫

S

ρχ(x′1, x
′
2, x

′
3) d3S′

[
3∑

s=1

(xs − x′s)
2

]−χ/2
;

(164)
where the constants χ and Gχ specify the nature and
the intensity of the interaction, respectively, and S
is the volume occupied by the system.
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The first derivatives of the potential with re-
spect to the coordinates are:

∂V
∂xs

= χGχ

∫

S

ρχ(x′1, x
′
2, x

′
3)(xs − x′s)[

3∑
s=1

(xs − x′s)
2

]1−χ/2
d3S′ ;

s = 1, 2, 3 ; (165)

it can be seen that the functions of the coordinates,
V and xp ∂V/∂xq, 1 ≤ p ≤ 3, 1 ≤ q ≤ 3, are homoge-
neous functions of degree χ, and the Euler theorem
holds (e.g. LL66, Chap. IV, § 10).

With regard to a selected infinitesimal volume
element, the potential may be thought of as the tidal
potential energy due to the whole charge distribu-
tion, related to the point under consideration, with
the unit charge placed therein. Associated with the
potential, defined by Eqs. (164) and (165), is the self
potential energy:

Epot = −1
2

∫

S

ρχ(x1, x2, x3)V(x1, x2, x3) d3S ;

(166)
the self potential energy may be thought of as the
tidal potential energy due to the whole charge dis-
tribution, related to all the infinitesimal volume ele-
ments, provided each pair is counted only once.

The coincidence of Eqs. (166) and (32) may
be verified along the following steps: (i) write the
alternative expressions of the potential energy in ex-
plicit form, using Eqs. (164) and (165); (ii) express
the explicit form of Eq. (32) as a sum of two halves;
(iii) in one half, replace the variables of integration,
(x1, x2, x3) ↔ (x′1, x

′
2, x

′
3), keeping in mind that the

integrals are left unchanged; (iv) sum the resulting
two halves and compare with the explicit form of
Eq. (166).

To get more information on the charge distri-
bution, let us define the tensor potential:

Vpq(x1, x2, x3) = Gχ

∫

S

ρχ(x′1, x
′
2, x

′
3)

× (xp − x′p)(xq − x′q)[
3∑

s=1

(xs − x′s)
2

]1−χ/2
d3S′; (167)

and the self potential-energy tensor:

(Epot)pq = −1
2

∫

S

ρχ(x1, x2, x3)Vpq(x1, x2, x3) d3S ;

(168)
the above mentioned tensors are manifestly symmet-
ric with respect to the exchange of the indices:

Vpq(x1, x2, x3) = Vqp(x1, x2, x3) ; (169)
(Epot)pq = (Epot)qp ; (170)

and the related traces equal their scalar counterparts:

3∑
s=1

Vss(x1, x2, x3) = V(x1, x2, x3) ; (171)

3∑
s=1

(Epot)ss = Epot ; (172)

conform to Eqs. (164), (167), and (166), (168), re-
spectively.

The coincidence of Eqs. (168) and (31) may
be verified along the following steps: write the al-
ternative expressions of the potential-energy tensor
in explicit form, using Eqs. (167) and (165); (ii) ex-
press the explicit form of Eq. (31) as a sum of two
halves; (iii) in one half, replace the variables of inte-
gration, (x1, x2, x3) ↔ (x′1, x

′
2, x

′
3), keeping in mind

that the integrals are left unchanged; (iv) sum the
resulting two halves and compare with the explicit
form of Eq. (168).

In the special case of gravitational interaction,
χ = −1, Gχ = G (constant of gravitation), ρχ = ρ
(mass density), the potential and the potential en-
ergy, both in scalar and in tensor form, assume their
usual expressions known in literature [C69, Chap. 2,
§ 10; see also therein a proof for the equivalence of
Eqs. (31) and (168) - also illustrative for the equiva-
lence of Eqs. (32) and (166) - where the steps outlined
above are followed in a reversed order].

B. An alternative expression of the
generalized anisotropy parameters

Let us rewrite Eqs. (107a) and (107b) in a
more compact notation, as:

(1− δ3r)IrrΩ
2

+ Mσ2
rr + (Epot)rr

= Mσ2
rr −Mζrrσ

2 ; r = 1, 2, 3 ; (173)

and combine Eqs. (105a) and (173) to obtain:

1
2
Ïrr = M(σ2

rr − ζrrσ
2) ; r = 1, 2, 3 ; (174)

from which the following expression for the general-
ized anisotropy parameters is derived:

ζrr =
σ2

rr

σ2
− 1

2
Ïrr

Mσ2
r = 1, 2, 3 ; (175)

and the related trace, owing to Eqs. (15), (107c), and
(107e) reads:

ζ = 1− 1
2

Ï

Mσ2
; r = 1, 2, 3 ; (176)

where ζ exceeds unity for a moment of inertia with
respect to the centre of mass decreasing in time, and
vice versa.
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Finally, the combination of Eqs. (107d) and
(175) yields:

σ̃2
rr = σ2

rr −
1
2

Ïrr

M
; r = 1, 2, 3 ; (177)

which defines the effective velocity dispersion com-
ponents related to random motions.
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Originalni nauqni rad

Ciǉ rada je sticaǌe boǉeg uvida u tri
glavne postavke koje se odnose na astrofi-
ziqke sisteme na velikim skalama, tj.: (i)
formulacija tenzorskih virijalnih jednaqina
polaze�i od postavki analitiqke mehanike,
(ii) istra�ivaǌe uloge sistematskih i slu-
qajnih kretaǌa u odnosu na konfiguraci-
je u virijalnoj ravnote�i; (iii) stepen do
koga su sistematska i sluqajna kretaǌa ek-
vivalentna u spǉoxtavaǌu ili izdu�ivaǌu
raspodele mase. Tenzorske virijalne jed-
naqine su formulisane bez obzira na prirodu
sistema i ǌegovih konstituenata generalisa-
ǌem i proxirivaǌem procedure korix�ene
za skalarne virijalne jednaqine u prisus-
tvu diskretnih pod-jedinica (Landau and Lif-
schitz 1966). Naroqito, pokazano je da je ten-
zor potencijal-energija simetriqan u odnosu
na zamenu indeksa, (Epot)pq = (Epot)qp. Za-
tim su rezultati proxireni na kontinuirane
raspodele mase. Detaǉno je analizirana
uloga sistematskih i sluqajnih kretaǌa u
bez-sudarnim, idealnim samo-gravitiraju�im
fluidima ukǉuquju�i radijalne i tangen-
cijalne disperzije brzina u ekvatorijalnoj
ravni, a odgovaraju�a sredǌa ugaona brzina
zasnovana je kao rotacija. R3 fluidi su
definisani kao idealni, samo-gravitiraju�i
fluidi u virijalnoj ravnote�i sa sistemat-
skom rotacijom oko glavne ose inercije,
recimo x3. Odgovaraju�e virijalne jed-
naqine napisane su koriste�i moment ten-

zora inercije, Ipq, tenzor potencijal-energije
(Epot)pq i generalisani tenzor anizotropije,
ζpq (Caimmi and Marmo 2005, Caimmi 2006a).
Dodatni napor posve�en je istra�ivaǌu oso-
bina osnosimetriqnih i troosnih konfigu-
racija. Objediǌena teorija sistematskih
i sluqajnih kretaǌa razvijena za R3 flu-
ide uzimaju�i u obzir imaginarnu rotaciju
(Caimmi 1996b, 2006a) i odre�ene teoreme
koje va�e za homeoidalno izbrazdane Jakobi-
jeve elipsoide (Caimmi 2006a) proxirene su
na opxtiji sluqaj R3 fluida. Pokazano je
da je efekat vixka sluqajnih kretaǌa ekvi-
valentan dodatnoj realnoj ili imaginarnoj
rotaciji, respektivno, ukǉuquju�i spǉox-
teǌe (du� ekvatorijalne ravni) ili izdu�i-
vaǌe (du� rotacione ose). Ustanovǉeno je da
se R3 fluid uvek pokorava adjungovanoj kon-
figuraciji sa izotropnom raspodelom sluqaj-
nih brzina. Tako�e, dodatna ograniqeǌa su
ustanovǉena na stepen sluqajne anizotropije
brzina du� glavnih osa i to za troosne kon-
figuracije. Formulisan je potreban uslov
za nastanak bifurkacionih taqaka od os-
nosimetriqnih do troosnih konfiguracija u
virijalnoj ravnote�i, koji je nezavistan od
parametara anizotropije. Ura�eno je svo�eǌe
na specijalni sluqaj homeoidalno izbraz-
danog Jakobijevog elipsoida i neki prethodno
ustanovǉeni rezultati (Caimmi 2006a) su re-
produkovani.
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