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ABSTRACT

In many radiative transfer (RT) problems, the sources contain a scattering term that couples all the
specific BT equations, one for sach frequency and direction, so that solving the problem means solving
the system formed by these equations. Each of them is a first-order linear differential equation with its
own initial condition assigned at a different point of the medium, which makes the solution of the
system extraordinanly difficult.

Omne simple way to achieve a solution is with the so-called A-iteration: sources and sinks given as a
first approximation — computation of the specific intensities from their own RT equations — computa-
tion of the scattering terms — recomputation of the sources and sinks. This scheme is straightforward,
but unfortunately in practice its convergence rate is oo slow to be of value in the case of optically thick
S¥SLEmS.

The aim of this paper is to show that a forth-and-back approach (the natural approach to descnbing
sequentially the two intensities propagating alomg the two directions of a straight line), together with an
implicit representation of the source function in the computation of the intensities within the above iter-
ative scheme, can dramatically accelerate the convergence of the iterative process while retaining the
straightforwardness of ordinary A-iteration.

Subject headings: methods: numenical — radiative transfer

I INTRODUCTION

It is well known that one intrinsic dificulty of non-LTE
radiative transfer (RT) problems arises from the nonlocal
coupling between the radiation field and the excitation state
of the gas: the transport (absorption and emission) coefli-
cients depend on the specific intensity of the radiation field,
namely, on the solution itself of the KT problem. In furn,
the specific intensity at each point of the medium depends,
via the RT process, on the values of the transport coeffi-
cients over a wide range of distant points. Therefore, in
general, an iterative solution must be sought in order to
solve the global problem, Two alternative approaches can
be envisaged. Either a sequential iterative procedure can be
considered, in which the different phenomena couplsd
together are tackled one by one while all the others are
assumed o be known, or, the different phenomena can be
faced simultaneously by means of the corresponding linear
formulation.

Although the transport coefficients may be assumed to be
known, at least within each step of the iterative procedure, a
further difficulty is introduced by the eéxistence, within any
specific RT equation (one for each pair of frequency and
direction), of a scattering term that depends on the full set of
the specific intensities. Therefore, all the BT equations are
strongly coupled by the scattenng term.

In some cases, such as in the well-known instance of the
two-=level atom line formation problem, the source function
can be explicitly formulated in terms of a scattenng integral,
and the problem, in this case linear, can be solved by using
either direct or iterative methods. Yet in many other physi-
cal problems it is not possible to write the source Tunction

explicitly, so the self-consistent solution of the RT and sta-
tistical equilibrium equations, which here play the role of a
scattering-like process, has to be achieved by means of an
iterative method. This is the case, for instance, with the
multilevel atom non-LTE line transfer.

The aim of this paper is to show that the convergence of
some of the iterative methods currently in use can be greatly
aceelerated when we treat separately, within a forth-and-
back process, the natural two-stream representation of the
radiation ficld along cach line.

As with the integral methods based on the A-operator, we
employ an implicit representation of the source function
when computing the mean intensity of the radiation field. In
contrast to the A-operator implicit scheme, which we might
regard as global, we may consider the implicit scheme pro-
posed here as local,

In the former, the aperator Alr, 1) 15 equivalent to the
integral form of the RT equation: one can express the spe-
cific intensities I, (), hence the Mequency-integrated mean
intensity J{t), through a linear combination of the
unknown valpes of the source Munction St} for all the
values 1’ of the optical depth grid.

On the contrary, the forth-and-back approach allows us
to introduce an implicit local scheme: any intensity at a
given point, propagating along a given direction, is
expressed as a linear combination of the unknown values of
the source function 5(t) and its t-derivative 5z at previous
points along the same direction.

This alternative choice leads to a different way of per-
forming the iterative scheme, The result is a very high rate
of convergence.



736 ATANACKOVIC-VUKMANOVIC, CRIVELLARI, & SIMONNEAU

In the first part of this study on non-LTE line RT, we
limit ourselves to the well-known instance of the two-level
atom line formation problem, under the assumption of
complete redistribution,

The particular interest of both the problem itself and the
relevant methods for its solution is dus not only to its
intrinsic physical relevance but also, above all, to the fact
that it constitutes the veritable cornerstone of BT, More-
over, because its exact solution is known, it constitutes a
vory usciul benchmark for testing the quality of any new
algorithm.

In the second part, the method is employed to solve both
the two-lavel atom problem, in which partial redistribution
iz taken into account, and the non-LTE line formation
problem in the case of a multilevel atom model.

For the sake of an easier presentation, we consider in (his
paper the case of a plane-parallel, stationary medium.
However, the conclusions of this study can be straightfor-
wardly generalized to other systems with different

EEOmeLry.

2., THE TWO-LEVEL ATOM MODEL

Let ws consider a stationary medium consisting of plane-
parallel layers whose physical properties vary only with the
coordinate z measured along the direction & perpendicular
o the layers. Let the system be bound by the planes A and
B, whose intersections with the z-axis have coordinates 2,
atid zg such that z; = z5.

According to physical considerations, it is customary 1o
choose z, as the origin of the t-coordinates {ie, on the
upper boundary surface) and to introduce a mean optical
depth scale r, defined by

oz) = f'x{z*]:rz* : 1)

where x(z) [or y(1)] iz a weighted average of the opacity,
assuimed to be known. Thus, for z = 2, it holds that ¢ = ();
for z = 2y t =T, ig, the total mean oplical depth of the
system.

Under the above assumptions, the RT equation Lakes the
form

dly
n = .l Str)] (2)

According to the standard notation, I_Jr) is the specific
intensity of the radiation fizld at the mean optical depth «, x
is the [requency displacement from the line center in
Doppler width units, and p is the cosing of the angle
betwesn the photon's direction and the outward normal &,
The quantity ¢, is the absorption-hine profile, normalized to
Laity.

In the ¢ase of an atomic model consisting of only two
bound levels {two-level atom), and assuming complete
redistribution (CR) in the line profile, the frequency-
independent line source function is

Sz} = eBlz} + (1 — el 1) , (3
where J,, is the scattering integral,

L +
J it =§J‘ d,uj dx @ I f1), 4)
-1 -

Val. 487

which accounts for the angle and frequency coupling of the
specific intensities at the given depth point «. The branching
ratio between the thermal (LTE) contribution B{t) and the
scattering term J, is represented by the non-LTE parameter
. The [atter depends on the local properties of the medium,
50 that it may be a function of the optical depth © as well.
The same holds true for the absorption profile coefficient
{,, which in some cases may also depend on the direction .

Finally, the specific intensities incident onto the bound-
ary surfaces are given data of the problem. They furnish the
corresponding initial conditions for equation (2), namely,
the known values of the down-going intensities incident
onto the upper boundary swface e=0: [ Jt=10)
(—1 < g = (), and the up-going intensity incident onto the
lower boundary surface, t = T [ ft =T} (0= p = 1}. As
15 customary, we use (he notation I:F and I, for the up-
going and down-going intensities, respectively, where g now
ranges from O to 1.

For the sake of simplicity, in the presentation of the new
method we consider the case of a profile independent of
both T and p. The application to the most general case is
straightforward, becauwse the difference is only in the
numerical compatation of the optical distance between
pairs of depth points for any given frequency x and direc-
Liom .

The numerical solution of the BT equation (2) can be
directly achieved by means of either differential or integal
methods (see Mihalas 1978} As is customary, the first step
toward a numerical solution is to consider IZjt) at each
depth r over a finite grid of ND directions g, and NF fre-
quency points x; Then the integrals in the scattering term
Jq-[rj are replaced by the corresponding quadrature sutns,
with proper integration weights. Therefore, we consider
equation (2) only for the discrete set of specific intensities
with directions g, i = 1, ND, and frequencies x,, j = 1, NF.
The numerical solution of the set of equations (2) needs the
diseretization of the depth variable too. Thus we evaluate
all the relevant depth-dependent functionz only on a finite
grid of mean optical depth values ¢, L =1, NL. Tt holds
that 1, = 0 at the surface, and t,; = T at the bottom,

3. THE A-ITERATION

The most straightforward iterative procedure to solve the
two-level atom problem is the so-called A-iteration, which
solves in turn the BT equation (eq. [2]) and the statistical
equilibrinm equations, the latter leading in this case directly
to the source function given by equation (3).

Starting from a current solution 5%z} of the source func-
tiom, we compute the mequency-integrated mean intensity
J(t), either by means of equations (2) and {4) within a
differential approach or by means of an integral operator
like that defined by eguation (5) within an integral
approach. Then the updated values 5%z} of the source func-
tion are computed via equation (3). This may be represcnted
by the following sequence: 8%(7) — Loz} = Jit) = 8"x).

The differential approach, which uses a finite-differcnce
form of equation (2} 15 one of the most general and Hexible
methods used to solve the aforementioned problem,
However, the integral formalism which employs the A-
operator (Hopf 1934) to represent the formal solution of the
transfer equation,

J it = Ay, 1) Sl (5)
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15 also in curtent vse (for the line formation problem see
Avrett & Loeser, 1969), The aforementioned iterative
sequence 15 named A-ileration after the A-operator, what-
ever the actual method emploved for the solution of the RT
equation.

But, irrespective of the approach chosen, the convergence
of this straightforward procedure in practical computations
is too slow Lo be useful for systems that are optically thick,

Let us mow comment upon the construction of the
Altg, 1) operator, From a prescribed functional form for
), one can write, for all the values 1, of the optical
depth grid, linear relations for the specific intensities Ttk
and consequenty for the frequency-integrated mean inten-
sity J e} as a function of the unknown values of the source
fanction St L

In order to do this in the frame of the classical product
integration method (Avrett & Loeser 1969), 2 polynomial
representation of S(1) on each subinterval (z; _,, 7, ) must be
assumed. As the RT is a typical integrodiferential, second-
order problem, a piccewise guadratic approximation for
5{1) is necessary from the mathematical point of view and
sufficient from the numerical point of view. OF course, it is
important to ensure that the variation of the function
between each two successive depth points {t,.,, t.) is not
tao abrupt. Between the last two depth points (txp— g Tl
it is necessary to use a linear approximation.

Although in this paper we do not employ any A-operator,
our implicit treatment of the RT problem is based on the
above functional representation of St

4, A SEMI-IMPLICIT A-ITERATION

This section has two purposes: to discuss an improved
A-iteration method with results better than those of ordi-
nary A-iteration by only a factor of 2, and to introduce the
germ of the new method that we present in § 5.

The existence of two separate families of boundary condi-
tions naturally suggests the separate description of the pro-
pagation of the up-going intensities I_Jfr), with initial
conditions at Ty, = T, and that of the down-going inten-
sities I [z}, with initial conditions at « = 0. This recalls the
basic idea of a forth-and-back scheme,

Comsequently, we can define the corresponding mean
intensities:

1 +
T} = L dy j dx g, 15 (6a)
and
1 + 30
I3 = L du f dx 0,15(0) (6b)
Therefore, according to equation (4], we have
Ity = 40J5 (=) + J 200 (7)

Omn the baszis of this physical discrimination, we can seek
new, more efficient iterative strategies. The first and most
obvious one 15 3 semi-implicit A-iteration, which works
according to the following scheme.

We assume, as in ordimary A-iteration (cf § 3), that a
current estimate of the source function, 5%z}, is known at all
the optical depths ;. Thus, it is straightiorward to compute
explicitly in the first part of each iteration the down-going
intensities It} by solving the relevant RT equations with
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a known source function, either in the differential or in the
integral for, and, successively, the corresponding frequency-
integrated mean values J_(x;){cf eq. [6b]).

Omce J_(1;) has been explicitly evaluated at each depth,
we can compute the wp-going intensities in the second part
through an implici procedure,

From the integral form of the RT eguation for the
up-going intensities, we can write, for the generic layer
(TrseToezh

" . ; TL+1]

Sy e~ r-weaie Lz gy
L fi

(8)

By assuming piecewise parabolic behavior for the source
function, it is easy to derive the cocfficients p;.", pr.r . and
g, of the unknown values of 8{r.), $iz, . ) and §r;4,) in
the relation

Ioleg) = I0jtp . he™ i 4 pl *S(z,)
+ Pﬁl Sitpeg) + g Slrp ). (M

These coefficients, together with the exponential exp
(=Arp,/p), are the basic building blocks of the local
implicit scheme. They depend only on the known slantout
optical distances Are, /i, with Ar =1, ., — 1,.. Here and in
the following, the prime denotes derivatives with respect to
T.

We start from the bottom layer (ty; - . Tk The incident
up-going intensities 120ty ) are given data of the problem,
and consequently JJ({ty.) is also known. As J{(ty.) has
been already computed in the first part of the iteration, we
obtain S (ty) from equation (7}, and hence the value of the
new source function 5%ty ).

Because of the assumed linear behavior of §(t) in the last
layer (Ty; 1. Txeh the derivatives at the two limiting points
of this interval are given by the relation

Sewed = STayg— 1) = [Slrped — Sy - J]/A . (10

Therefore, eguation (9) particulanzes into
Dot = ey e ™ %% 4+ PLlS{twn -0} + PRl Sltg) .
(11)

Of course, the coefficients P} and P2’ are easily derived
from plY, piF, and gl previously computed, by taking
into account equation (10,

Because I} {ty,) is a datum of the problem, and the value
of Sty ) has already been computed, we can cast equation
{11yin the form

Lidtyr—1h = -Ff:,. + # Sl {12}

where the coefficients o/, and #&_, are easily derived. After
numerical integration over all frequencies and directions (cf,
eq. [6a]), we obtain the coefficients o™ and b" of the expres-

S0
J;{TKL-J:|=E+ +ﬁ"5{1’,.;,_1}- (13)

At this stage, J {ty,— ) is already known from the first
part of the current iterative step, and J{tyy ;) is implicitly
known in terms of the as yet unknown vatue of S{z,, _,) (see
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lag 7

Fio. [ —Evolutlon with jteeations of tee computed sowree fanction B
a two-leve]l atom with £ = 107* The solid lines, Babeled with the relevant
iteration number, commespond to forth-and-back mophicit A-iferation (see
& 51 The dashed and dot-dashed lines correspond 4o the 100 ileration of
the semi-implicit A-ileration {of § 4) and the ordinary A-iteration {cf § ),
respectively.

eq. [13]). By using equation (7), we can express J ty,— ) in
the form

Joltpp ) = 2y oy + Bz Sty ) - (14}

Again, the numerical values of the coefficients «,, _, and
Pup - are eagily derived. This relation, topether with the
definition of S{ty, _,), a8 in equation (3), lead to the new
numerical value of STy - 1)

Once the values of 5™y, ) and 5%ty _ .} are known, the
derivatives at ©,; _; and t,; are given by equation (10). The
values of I (ry;—,) are straightforwardly obtained by
means of equation (12).

Then the previous elimination scheme Gan be repeated for
all the successive layers (1, £;.4), sweeping upward from
L=NL—2uptoe L =1 The known output from the pre-
?EGUS |EL}'EI‘ '.II.L“' is TL I 21 LE.. I:H':'EL"' |]:, 5{1‘1... 1}, ﬂl’ld .Sr{TL.r l:l"
is the necessary and sufficient input for the treatment of the
succeeding layer (z;, t; + ), where, via equation (%), we can
derive the coefficients o 7 and A of an equation like
squation {12) at any t,, and ﬂentuaﬁy obtain the values of
the coefficients &, and f; of a linear relation like equation
(14):

Jlte) =y + PS5y . (15)

By now taking into account equation (3), we obtain the
new valoe 591, ) of the source function at 1,

Just a minor difference arises in the way of computing
5", ). Equation {10} must be replaced by

Flre) = 2[8(tp s o) — Sl Ar = Sry),  (16)

which follows lfom the assumed precewise parabolic behav-
ior of 3{t).

In the above scheme, we assumed that both I_fr =)
and I} [t = ty,) were known data of the problem. This does
not hold tree, however, in some cases, ¢.2., in the important
ont of a semi-infinite atmosphere. In thiz instance, the
intensities incident on the last layer are not explicitly

=

kg T

Fia 2—8ame sz Fig 1, but for the case withe = 107"

known, However, at large optical depth the so-called diffu-
sion approximation holds for the specific intensity. Namely,
I tqe) can be expressed as a linear combination of S{zy,)
and STty ) Thus, J(zy,) results as a linear combination of
S{tye) and Sty _,) after we have climinated 5'(1,.) by
means of equation (10). A similar linear form lor J(zy, )
iz derived by starting from eguation (11). The values of
SMryp- 1) and 5%ry,) are straightforwardly derived from
equation [3).

It iz self-evident that the ease of use of this semi-implicit
A-iteration is the same as that of the classical one. The
distinctive difference is brought about by the fact that the
former usecs the updated values of the source function in
order to compute the up-going intensities.

This approach is similar to that of the Gauss-Seidel
method discussed by Trujille Bueno & Fabiani Bendicho
(1995), However, the way of computing the values of 7 (1)
iz different. There, the intensities were computed by means
of a differential operator expressed by a three-point differ-
ence formula, which may introduce minor numerical diffi-
culties, since such a formula needs the valve of S{t, . ;) that
has just been recomputed, that of 5(t;) which i3 actually
computed, and that of 5(z; ), whose removal requires a
global treatment of all the values of {S{1,)].

On the contrary, the mtegral method hers s a
two-point algorithm that works by taking into account the
valoes of both the source function and its first derivative on
pairs of successive depth points.

However, the improvement in terms of rate of con-
vergence brought about by this “half™ A-iteration is not
substantial. With respect 1o classical A-iteration, only a
factor of about 2 is gained, which is, of course, not enough

{See Figs. 1 and 2,)

5 IMPLICIT A-ITERATION

The conclusion of § 4 is that althongh better than that of
the ordinary A-iteration by a factor of 2, the rate of con-
vergence of semi-implicit A-iteration is still exceedingly
slow, Therefore, we must explore the possibility of forther
acceleration.

In their work already mentioned in § 4, Trujillo Bueno &
Fabiani Bendicho (1995} introduce a successive overrelaxa-
tion (SOR) method in order to achieve a faster iterative
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procedure. However, the value of the relaxation parameter
eo that optimizes the iterative procedure is known for a few
stroctured problems only. In more complicated problems, a
fairly sophisticated eigenvalue analysis may be necessary in
order to determine, case by case, the optimum value of w (cf.
Golub & Van Loan 1983, § 10.1).

Om the contrary, we achieve here 3 substantial improve-
ment of the rate of convergence by fully exploiting the idea
of an implicit representation of the source function in the
computation of both the up-going and the down-going
intensities.

In semi-implicit A-iteration, we store the numerical
values of the down-going mean intensities J; (z), computed
from the known values 5%r) of the current estimate of the
source function. Alternatively, in forth-and-back implicit A-
iteration, we shall use the old values of the source function
to compute and store, for each L (L = 1, NL), the coeffi-
cienils by and ¢ of the linear relation

Jolrd = by Sleg) + e Sz {17)

which represent mmplicitly the values of the down-going
mean intensities. The way of computing the coefficients of
equation (17) is straightforward and will be described in
b 5.1. These coeflicients are wsed later in the sueceeding
backward process,

We show in what follows that the results lead to o new
method whose rate of convergence is extremely high.
Perhaps it 15 worth stressing that the implementalion of this
new method comes from physical considerations, not from
a previouns spectral analysis of the mathematical properties
of the problem.

The operative scheme of the new method is essentially the
same as that of semi-implicit A-iteration, which in turn is
the same ag that of ordinary A-iteration. The fundamental
impropement is the way of storing the information relevant to
J o ()l eq. [1T]) in the first part of each iterative step.

5.1. The Forward Process

We start at the upper boundary surface L = 1, where the
values of I (0} are given data of the problem. Then we
obtain directly from equation (6b) the corresponding
known value

Jolrh=a; . (18)

Usually it holds that a; = 0.

At all successive optical depths €, with L > 1, the formal
solution of the BT equation for the down-going intensities
reads:

I
I;Q{Tf.} = .F;#{TL j}E_ﬂlﬂ.-nlﬂ _l_-[ S{!}E_[l.l—lh}&r# % dr
L-1

(1%)

Asgin § 4, the assumption of parabolic behavior for 5(z) in
the intarval (z; _ ,, t;) allows us to write

InJe) = I, Je™dmie
+ plr 8z, y) + plo Str) + g, S . (20)

The coefficients pl>, pﬁ;, and gg,, another set of basic
building blocks of the scheme, are easily derived.
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The explicit numerical value of I (7, _,} is the result of
the previows recursive application, from the layer (r;, )
down to the layer (1, _ 5, £; _ ) of equation (20), in which we
have used the known values of the set [8%¢); /=1, L — 1}
as well as those of the derivatives {§%r); I =1, L — 1}.
Likewise, we use the values $%r, _ ) for Sz, _ ) in equation
{20} Consequently, by grouping together the known terms
we can rewrile equation (20) in the lorm

Fodtg) = o + @, Sz + ¥, 8, (21}

where the coefficients #_, and ¥, replace p2. and 4.,
respectively, and it holds that

A gy = Tty )™ 4 plr 8%, ). (22}

By integrating over frequencies and directions, we obtain
the relation

Toie) = dy + by Sir) + 8 8(ey) . (23}

We wish to stress that the coefficients p, =, p3., and g, in
equation (209, and consequently #_, and ¥_, in equation
(21), henee by and &7 in equation (23), do not depend on the
values of S""Llit}. They depend only on the optical distance
Al = 1, L). On the contrary, the coefficient a; depends
linearly on the valees of 5%) for all the optical depths with
1 < 1. Because numerically the set of derivatives {5%t,)}
depends lincarly on the set {5%t;)}, one easily realizes that
It ) and consequently the coefficient &g, are lincar
combinations of the set {8%z); I = 1, L = 1}. In principle,
we could store the coefficients 47, b7, and &, evaluated at
each depth point 1, for further usa in the backward process
of computation of the new values of S(r )

But, in the recomputation of the new values .T‘{:GLJ and
8*%rty), a mismatch might ocour at ¢, ; the curve 5%1) for
t < 1, used to compute d; , and the updated curve 5%t} for
T = 1;, might have different values at ¢;. Thus, a more
correct computation of 47 in accordance with this updated
value of §%z;) can be reached by scaling the function $%7)
for t = ¢, by the factor 87z, )/5%t,). This will be automati-
cally performed in the backward process, provided we store
in the forward process, instead of the coefficients 4; , by,
amd &7, the new ones by and ¢f of the revised relationship
anticipated in equation (17):

J;leg) = b Siey) + e Sz,

namely, the relationship that carries on the information rel-
evant to J o (tg). It holds that

by = b + ag /3%t . (24a)
o =6 . (2db)
The procedure is repeated until L = NL.

5.2, The Backward Process

The backward process is, in practice, the same as in § 4.
At the bottom, J_(zy,) is directly known from the corre-
sponding boundary conditions. By taking into account
equation (17) for J_{y.), we obtain a similar relation for
I Atseh from which, after we have climinated the derivative
Sty by means of equation (10), we can easily derive the
coefficients ay;, by, and oy, of the relationship

Jp'[tmrj = dyy + b Styp) + Cpn SThp- 1) (25)

Equation {11}, Le., the RT equation for the out-going inten-
sity between 1y, and 4, allows us to express J3 (7y.-1)
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as a linear combination of S{ty;} and S{ty, — ;J, whose coeffi-
cients are known, On the other hand, equation (17} together
with equation (10), allows us to express J_(ry;, ) alsoas a
lincar combination of S(ry,) and S{ry,_ ). Consequently
JAtwp -y} can be expressed in the same form as equation
75):
-qu'[fru.— =gy + By STy + cpo 1 SlThe—1) -

. (26)
By substituting equations (25) and (26) in the definition of
the source function (see eq. [3]) at . and oy, Tespec-
tively, we are lelt with a system of two linear algebraic
equations in the two unknowns 8{z.;) and 8ty _,) from
which we easily derive the updated values of 5%ty) and
Stwr -1

The values of the derivatives Sty ) and SVryp.. ) are
trivially derived from equation {10). It is straightforward to
compute I {1y, _ ) from equation (11).

The continuation of the backward process from ty,
through 7, is obvious. For each layer (t;, 17+ ), the nomeri-
cal values of $(z; ) $Try, ) and £ 0, . ) are known from
the treatment of the previous layer.

The cocfficients by and ¢f for J ™ (r,) in equation {17) are
known from the forward process. By using equation (16] to
express 5t ) in terms of the thus far unknown valus of S(t;)
and the known values of 8(t; , ;) and 8%z .} we can write
I (re) as a lincar function of 5z, ) only.

By integration of the formal solution for 1_(1;), as given
by equation (9), and by taking into account the fact that all
the terms except S{t,) are known, a similar expression for
J ol is easily derived.

Consequently, we obtain the required linear relation
betwesn J f'f:.]' and S{r;), the same as equation (15), that
together w1t]1 equation (3), allows us to derive the new value
of §%rt,) and successively that of 8™z, ). In such a way, the
step is closed, and we can proceed upward.

6. COMPARATIVE RESULTS AND CONVERGENCE
PROPERTIES

In order to test the new method proposed n § 5 we
applied it to the two-level atom problem described in § 2.
This represents the ideal test case for checking the numeri-
cal accuracy of any algorithm employed to solve the RT
equation, because its exact solution has been known for
many years, (See, e.g., Sobolev 1956; Case 1957; Avrett &
Hurmmer 1965; Ivanov 1969)

As at first instance, we considered 2 mediom of constant
properties, whose only opacity source is the line itself,
without an overlapping continuum, In this case, due to the
assumed zero gradient of the Planck function B(t), the
features of the solution, namely, the value of the source
function at the surface and its characteristic scale (i.e., the
depth of thermalization), depend only on the non-LTE
parameter &

In typical non-LTE problems, the value of & is very small
(=107 *). For this reason numerical errors can easily blur
the solution. In order to test the capability of the method
and to check the accuracy of the solutions, we selected two
cases with s equal to 1077 and 1075, respectively.

Figures 1 and 2 show the evolution with iterations of the
source function computed. One can see at once that, ih a
very small nomber of iterations {of the order of 10-15),
forth-and-back implicit A-iteration [urmishes numerical

3

1008{5-5,1/5,,

]

1 |
-3 =% =1 9 ¥ 2 3 4 5 & T B 8 10
lag *

Fi. L—Relative error for the iterations &<14 of the source funciion
Sz}, shown im Fig. 2.

results that practically coincide with the exact solution. For
comparizon’s sake, we also plotied the values of the source
function after 1000 iterations, obtained both with classical
A-iteration and with semi-implicit A-iteration {(cf. § 4). The
rate of convergence of the latter is higher by a factor of 2,
but in both cases the convergence is unacceptably slow.

By comparison of our results {(achicved with the same
number of discrete ordinates for directions and frequencies)
with the exact solution, 5.t} by Avrett & Hummer (19635),
we are in a position to plot the percent relative error on 8(t)
at cach iteration run.

In Figures 3 and 4 we show (on different scales on the
ordinate) the errors corresponding 10 iterations 6-14 for the
case with & = 107", For the case with £ = 107, the errors
are slightly smaller.

For the same two cases, we compare in Table 1 some
parameters suitable for the study of the convergence
properties of the method. First of all, we consider the abso-
lute value of the maximum relative errors | AS" |, which
corresponds to the maximum value in Figores 3 and 4, as
well as the absolute value of the maximum of the relatipe
correction | 358" |, between two successive runs of iteration,

5

1

T -

TO0e[5—5_) %
1

3.5

[
i.'.l

Fiz. 4—Zoom of Fig. 3, t0 render appreciable the evolutionm of the
redative error along the lact iterations,
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TABLE 1
CONYERGIMCE PROPERTIES OF THE IMPLICIT A-ITERATION METHOD?

Tteration | A5 [ |5-5'.|.u' || A5 12 laTLz E* Iy
g= 10"
1....... 11254 Qr412 331,242 6218 vun
o 190,401 AB_3%46 14.084 17453 23,608
i [ 5860 44,182 GhS2 T.185 12212
L J. AT 4x2 27208 1241 3310 6347
- 11075 14420 150 1.674 3.3
Goeaine 4 350 TA58 0734 0847 L7l
. 1652 3188 0325 0423 0B44
. 0350 1.385 0.134 210 0459
L I 0LEOS 603 061 05 (0.1 %%
[V 0541 04585 (03 0047 e
... 0344 3450 (L0345 002s 053
12....... 0200 0,230 n0ze oy 0053
13....... 124 141 LUAVEY | 0013 iR |
4...... Ty LT | 001 G009 {033
15....... o7 074 0l 007 (2d
16 ....... O7s 00s? (010 (KNS 0017
17 ... . G073 {041 0 D04 D014
18...... . 0067 (u02s 0 D03 001z
L 058 D020 G010 (L2 0010
b | 055 LHT I 010 001 00T
g= 10"
1ivaieas 13587706 8810 PREE] TaEA9T
b S 1132100 01 THe 10,535 14590 20841
PV 1T nER T4.742 4,382 5574 el B
d....... 0859 49,401 1.BGH 2481 4243
Foarminin 26,521 27,294 .785 14077 1402
[ 10645 13494 0.3 (453 el
Toraiens 4 460 G.194 1H (191 0L.32R
L 1.7 2835 L] 80 0,328
L I 0,746 1,382 09 032 Los3
1a......, 0354 0592 (L0 0014 (020
| ) 1K) 0.267 005 00N 0014
12....... 243 LR {05 {00 {007
13 ....... id2 0114 (00T (L2 DO
14 ... 155 LTIE KT [LCHI LR
15 ....... {149 s .0HKE QLo LA
16....... 142 0049 0003 0001 (.00
| k136 0037 (003 {001 .003
18 ... fils 00T 00 U (2
1. i uong L (LEH AL |
b | B (120 L 0,00 QLD00 .00

Morn~Col, 1: lteration mumber. Col 2: Abeolute valee of the
maximum redodive error. Col. 3: Absolute valoe of the maximom of the
relptive correction, Col. 4: Quadratic average of the relative ereet, Col. 52
Cruzdratic averape of the pelative correction. Col, 6 Quadratic commess
ibod ratio.

" Al qussniiies are in parcent,

Furthermore, we evaluate the quadratic average aver the
full optical depth interval of the relative error and the rela-
tive correction, respectively:

| AS" ||, = {[IT[E‘ET} — 8.0 dlnt / J:-[Snlﬁr[l:= dln t}ul

(27
and
| 85" ||,
T T 112
- {I [$") — 5* Yo PdInt / J [5* Y] dIn :} .
(28}
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Finally, taking into account a previous suggestion by L.
Auver (1993, private communication) also Auer, Fabiani-
Bendicho, & Trujillo-Bueno 1994), we also consider the
guadratic correction ratio:

|| 6512
el L PRIE L) P

From global inspection of the tabulated parameters, the
excellent convergence properties of the forth-and-back
implicit A-iteration come into view. Afler a comparative
analysis of the run with iterations of the single parameters,
we choose, as the best criterion to stop the run of iterations,
the telerance condition that the maximum value of the rela-
tive correction of 5%z) between two successive iterations be
of the order of 0.1%;.

Because of the nature of the method, simple precision is
enough for most of the actual computations. Of course,
when the value of the parameter £ is smaller than the com-
puter's intrinsic round-off error, the use of double precision
becomes necessary in order to prevent spurious contribu-
tions to the sources, as in the case of our test with g = 1072,

Finally, we wish to call the reader’s attention to the
asymptotic behavior of the residual error | AS |, with the
number of iterations. Table | shows clearly that further
iterations cannot reduce its value. This has to be ascribed to
the unavoidable errors brought about by the discretization
of the optical depth scale. The results displayed, obtained
with 15 points per decade, show a maximum residual error
of about 0.1%. With 10 points per decade, | A5 [y, can be of
the order of 0.3, and with 5 points per decade it can grow
even to 1%,

¥, THE PARTIAL REDISTRIBUTION PROBLEM

In this section, we apply the forth-and-back implicit
A-iteration method to the case of the two-level atom line
formation problem, in which partial redistribution is taken
into account.

It this case the source function, which is not frequency
dependent, takes the form

St} = &B(x) + ([ — &) f | W“'rf Rix', x}Joizh,  (30)

where J {z} is the specific mean intensity at frequency X',
and R{x', x) 15 the redistribution operator. In the discrete
ordinates representation, the source function 5, = §_
reads:

I E*lz =

(29)

Sdr) = eBx) + (L — &) 3 Rij, k) 7) (31)

where the index j corresponds to x7, that is, to the frequency
of the absorbed photon.

T.1. The Forward Process

Following the procedure already described in § 5.1, it is
straightforward to compute and store, for each frequency x;
and each optical depth 1y, the set of coefficients by and ¢
of the relationship

Jieg) = by S} + e ST - (32)
That is, for each frequency x; we have a relation like
equation (17).
1.2 The Backward Process

Likewise, exactly as in § 5.2, we know for each layer {t,,
p+1) the updated values of I (r; ) and S%r;. ) and
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a5,

Fig. 5~~Evolution with ilerations of the frequency-dependent source
function 5{x) at optical depth ¢ = 0, for 8 two-level atom line with & Vaoigt
absorption profile @4x) and the B=" =} redistribotion function. The
values of £ and o are shown in the figure.

Sty 4+ 1) for each frequency x;. Thus, we can easily compute
the coeflicients of a relation like equation (9) for the out-
going intensities 7 (1,0 By integrating over y, we obtain the
coefficients 4,; and b of the relation
TH(eg) = a5y + b3 Se) (33)
for all the frequencies x,.
After removing &1} in eguation (32) by means of

cquation (16) [Si(zrs,} and 5fr;.,) are known at this
stage], we obtin the coefficients i and Ef',, of the relation

Jifrg) = dj + b Sfr) . (34)
Equations (33) and (34) allow us to write the coeflicients
o and f; of the required relationship

Jirgy =y + B Sl (33)

which, replaced in equation (31), ensure a straightforward
computation of the updated values of the source function
Shz,) and, from equation (16), of the corresponding values
Siire).

Then the process is repeated upward.

x|

lag 5,

Fig 6—Same as Fig. 5, at optical depthr =1
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1.3, Results

We solved the BT equation (2) for a two-level atom with
a source function as in equation (30). We used a Voipt
profile g x) with @ = 107 ° in the absorption coefficient,
and the redistribution function Ryx', x), which corresponds
to the angular mean redistribution function for the two-
level atom with an infinitely narrow ground level. Again, we
considered the two cases with e=10"* and = 1078,
respectively.

As in the previous case of complete redistribution, 2 small
number of iterations (13 and 13, respactively) are enough to
fulfill the tolerance criterion introduced above, namely, that
the preatest relative correction (for all the frequencies and
optical depths) between two successive iterations be less
than 0.1%,

The results reproduce the well-known ones by Hummer
(1969} and Mihalas (1978) In Figures 5 and 6 we show the
evolution with the iterations of 5(x) for the two optical
depths T = Qand © = 1, respectively.

%. THE MULTILEVEL FROELEM

In the most general case of a multilevel atom model, we
must solve an RT equation for each actual spectral line, i.e.,
for cach allowed radiation transition between the levels
considered. These radiative transitions are coupled through
the level populations [N}, which are the solution of the
statistical equilibrium {SE& equations describing the conser-
vation of the population of each level.

In the stationary case, the SE equations arc linear alge-
braic equations for the set of level populations [N}
However, some of their coefficients include the frequency-
integrated means intensity of the line radiation figld JW
relevant to the radiative transition i — j. For each level j, we
may express the conservation of ils population N in the
form

YN, Cy— Ny i + (N By — N B, — N 4]
[=J
k=)
=0, (36

where By, By, and 4 are the Einstein coefficients of the
radiative transitions considered, and C;; and C are the
corresponding collisional rates.

In turn, each of the intcgrated mecan intensitics J
depends, via the corresponding RT equation, on the source
function 8, i.e., on the level populations.

sy=tio_ Nids (37)
tij NiBy— N;Bj

In this way, the RT equation together with equations (36)
and (37) represent a strong nonlinear and nonlocal problem.
An iterative procedure becomes necessary, The straight-
forward A-iteration method, which solves the problem
by following the seheme {Nj'} - {SU} — {f;m[:',
N} = {7} = {Nj}l, has an impractically slow convergence.
Alternatively, the iteration method proposed in this paper

can accelerate it without any difficulty.

8.1. Forth-and Back Implicit A-Interaction

The operative procedure for this problem is exactly the
same as in §§ 5 and 7. We start with a known set of popu-
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Fiz. T—Mommalized source functioms 5,/B,. correspoedding o the
thres lines of a thresdewved hydrogen stom within an isothermal atme-
sphere. The log 1 scale on the abscissa bas to be rend, case by case, a3 the
mean line opdical depsh relevant to the iransition congidered,

lations [NY}, ie, with a set of known source functions
Sg{:}} {:q [37]) and the n::-rrespandmg first dercivatives
E £} for all the transitions § — j. As in the previous cases,
we repeal for each transition i — f the entire forward process
and the backward process layer by layer up to 1y, in order
to obtain the coefficients o, and §;; of the required relation

Jﬂ‘l’_l=|:‘.||+ﬁ|.|'g“" {33}

By replacing J,, in equation [fiﬁ-]l with the uxpressiﬂ-n
given by ﬁqualiﬂn {33} and taking into account cquauuu
{37), we can rewrite the generic SE equation for level f in the
form

VN Cyj— N;Cid + (N, By — N B

=
+ Ny Ay By — Ny Ay
+ E[{Nk“:*f— NJC‘.&] _{NI'BHL —_ Ht Hu-}ﬂn
k=]

That is, we recover a new linear systém for the set of popu-
lations {N;}, whose cocfficients arc guantities explicitly
known: I,Eu: radiative and collisional coefficients and the
interation factors {x,} and {f}. As already shown in § 5.2,
the latter are easily computed layer by layer.

The system of equations (39) gives the updated values of
the populations {N%}. The process is iterated to con-
VErgence.

B.2. Results

In order to test the feasibility of the method when applied
to the multilevel case, we solved the same problem, namely,
a three-level hydrogen atom within an isothermal atmo-
sphere, as in Avrett & Loeser (1987) Our results, shown in
Figure T, coincide with those from Avrett & Loeser within
an absolute error never greater than 3%. The existing differ-
ences are due to the unavoidable residual errors brought
about by the discretization in depth. In both cases, three
discrete optical depth points per decade were used,

The implicit A-iteration method requires only nine iter-
ations to fulfill the usval tolerance criterion that the relative
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difference (for the three source functions at all the optical
depths) between two successive iterations be less than 0.1%,

9. RECAPITULATIVE REMARKS

In this section we wish to comment upon the distine-
tive features of forth-and-back implicit A-iteration. Let us
look back to the two-level atom problem (cf § 2) It is
well known that the straightforward A-iteration
procedure—S87t) — I, t) = Jft) = 57), has an exceed-
ingly slow rate of convergence in optically thick media.

However, one easily realizes that thiz direct iterative
scheme holds, from the previous iteration, more informa-
tion than necessary when dealing with the cutrent ileration,
because it does not take full advantage of the linear com-
ponents of the problem, That i, in order to obtain the
updated values of the source function, 57%z), ordinary A-
iberation computes the whole mean intensity J fz) fram the
old values of §%1).

Semi-implicit A-iteration, thanks to the [orth-and-back
approach, computes from $%1) only one-half of Jx),
namely, the down-going component J (z). As already said,
the improvement is not substantial. Yet, there is another
way of separating the part of J (z) that is computed from
5%+) from that which is treated implicitly. Operatively, we
cam split J () into a Jocal and nonlacal component:

J = T} + I3 ) {40}

We choose the local term J1"{t,) so that it depends linearly
oft the unknown local values of Siz;) and 8'(z.), through a
functipnal form like

Joory) = FPSe) + 1 41)

whose coellicients F°° and 1" are directly derived from the
integral form of the RT equation, thanks to the assomed
functional representation of 5(z). (Sec § 5.) They depend
only on the known optical distances AL — 1, L} and
At(L, L + 1). Above all, they are independent of the trial
values 5%t). On the contrary, the nenlocal term J5%(z;)
dﬁpcnd!i on (and is to be computed from) the trial vafum of
M5

Therefore, the values of the coefficients f1* and y*° are
known a prior for all the 7;. Then, at a first stage we can
compute J2%z ) from $%t;), i.e, the source function com-
puted in the previous step of iteration. Successively, by
taking inte aceount the definition of the source function (cf.
eq. [3], equations (40} and (41), and equation (16), in order
to eliminate §'(z ), we obtain straightlorwardly the updated
source lunction $Yt, )

However, the introduction of the forth-and-back
approach—and the consequent split into a forward step
and a backward step—provides a further improvement,
which comes from the fact that only half of the nonlocal
part of J (z}, namely, the nonlocal part of J’?{rj, is com-
pubed from the old values 5%1) when dealing with the
down-going dircctions in the forward step. Later, when
dealing with the up-going directions in the backward step,
the nonlocal part of JJ (1) is computed from the updated
values S"(t). In this way, a further reduction of the informa-
tion carried from the previous iteration over (o the next one
is achieved.

We have reason to believe that the extremely good con-
vergence properiies of forth-and-back implicit A-iteration
must be ascribed to the fact that the only quantity com-
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puted from the old values 5%7) of the source function, and
only for ¢ = 7, is the nonlocal part of JJ{t;). The nonlocal
part of J7(r;) as well as the local part of both J 1 (r;) and
Jo(t;) are computed at each depth 7, from the updated
values of §41).

Besides the latter, another substantial improvement has
been introduced by the forth-and-back approach. When
computing, in the forward step, the nonlocal part of .FB; (T},
the procedure actually employs not the old values 5%(t) of
the source function (for T = ;) but those of a current source
function $*{x). The latter is a replica of 5%z), defined so that
it keeps the behavior of 5%z) but with values properly
scaled in order to match at 1, the value §%z;) of the updated
source function (cf, § 5.2). That is to say, the curtent source
function, actually used to compute the nonlocal part of
J o (xgk includes information from both the old spurce func-
tion 5%z} (its behavior for 7 < 7,) and the updated source
function {its value at 7, ).

Vol. 4587

In other words, in the course of each ileration step, the
forth-and-back implicit A-iteration method retains, at each
depth 1, the value of a single iteration factor: the ratio of
the nonlocal part of the down-going mean intensity to the
current source flunction 8%z, ). This iteration factor, the anly
piece of information retained from the current iteration, is
to be used later in the next step of iteration.
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Program. The authors acknowledge the award to O. A-V.
of a Sociéte des Amis des Sciences fellowship for a two-
month stay at the Institut d’ Astrophysique de Paris.

APPENDIX
A SIMPLE EXAMPLE: THE MONOCHROMATIC TWO-STREAM SEMI-INFINITE CASE

In order to illustrate the numerical procedure of the method presented in this paper, we now consider the simplest case that
still retains the basic features of the two-level atom RT problem, namely, a semi-infinite, monochromatic case in which only
one outgoing intensity I and one down-going intensity I~ are taken into account. (The two streams correspond to directions

with g = +1and p = —1, respectively.)

For this model, it holds that J* = 1* and J~ = I, and consequently the source function [cf. eq. (3)] reads:

-5-.1;B+|[i—£:r'i +1 . (AL}
With no incident radiation at the surface, the down-going intensity at the second depth pornt is given by
Iy = J S(t) exp [ —(ry = 1)]dt, (A2)
which reduces to
I3 =a; 8, +b; 8 +e5 8%, (A}
under the assumption of parabolic behavior of 8(z} over the interval (z,, t5).
The cocflicients of equation (AY) are given by
- 2 2
ag=F—mp{—.ﬂl. 1+E+E)' (Ada)
- 2 2 12
f?g HI—F—HP{—E(—E—E)i {Mb]
‘——l+£— (—4& 1+§- {Adc)
€ = A Cxp NE

with A = 1, — 1, (The reader should note that the notation here is different from that used in the main text of the paper.)
Successively, §, is replaced by the current value §7, and this term is multiplied by the scaling factor §,/85. Thus, it holds

that

I_-: =d;.5'1+-|.‘1.5"'2, {A'j]

withd, = by + {2z 3"/8%and ¢, = ¢3.

Next by assuming again the parabolic behavior of S{t) between 1, and t,, we can replace 5, by means of
y =1z exp [—(ry — 7)) +ay 5; + by 53 + 05 85, (A6)

that is,

Iﬂ,_ = d;-ﬁ'g. |- GaEa 5 {!!l.'.lr_]
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where it holds that
1 - -
5o (93 83+ I3 exp [—(ra — wa]l} . (AE])
3
In equation {A8), the value of I3 is computed from equation (A5) using the current valus 5% and 57. This process is continued
until we determine the coefficients of the relationship
Tp = dye Spp + e Sie - (A9)

In this way, at the end of the forward process we have computed and stored the two set of coefficients {c; } and {d;} (L = 2,
N L) which are to be used later in the backward step to determine the new valoes of 5, starting with Sy, and Sy _ .

In order to compte Sy, Sy - 1, and Iy we assume, as a boundary condition, that S(t) is linear for 1 > typ - ; 30 that on
the interval (tyy _ , Txg) it holds that

dg.:bg__ +

s I_SNI.—I

&) =8y = : AL
NL—1L NL for — ThE—1 { }
Consequently, we have
Ip—y = Syp-1 + Sy (Alla)
and
H;L = Sy + Sur - {(Allb)
By recalling equation (A1), we can derive the two relationships
l —&
Syp-1 =eB + 3 [(1 % dyyp - J8pp—1 + (1 + enr— 185211 (Al2a)
and
{A12b)

{The coefficients cyy -y, dyg - 1 . Exp. and dy; were cc-mputn:d and stored in the forward step. } MNow thanks toequation (A 10}, we
can easily derive the numerical values of §,; and 8,; _ ;. and hence those of 8y, = Syp_ o, Iy and [y,
The next step is 10 compute

Igp-s =Ty exp [={typ—y = tyr-211 + Bg-25wp—2 + Pap—aSue—y + Cp-2 ke, - (Al13)
Because of the parabolic approximation for 5{t), the coefficients ag; _ 5, by — 2. and ¢y, - ; are given by

2 2
ﬂ;L'2=I_E+ﬂ.__ﬂp{ ﬂ]ﬁz, {Adda)
2 2
bfﬂ__ b - — ﬂ _ﬁ_i B]i]:l- I: -I'_‘I ﬁ,i M {A 145]
and
e 1+ exp(-af14 (Alde)
CNL-2 = A pi—A4) Al
withﬂ. = THL"i = rﬁ'L‘:'
As the numerical values of 8., _ ; and Sj; .., are known, equation (A13) can be cast in the form
TRp-2 = Pyp-2 + dwe-28y0-2 - (AlL3)
From the forward step we have the numerical values of coefficients cyy . and dyy, - 5 of the relationship
Typ—z = dyr—2 8503 + Cyr—28Ne-1 (Al6)
in which, according to our assumption of piecewise parabolic behavior for S(r), it holds that
5 5
Shr - 3‘=2M*Eﬁ'ﬁ—l . (A1T)

TRE—1 — Tap-2
Because the values of S, _ , and 8, _, arc known, I, - 5 (ofl eq. [A16] ) can be cast in the form
Igp—z=Onpoz +lpp-a28x0-2 - (A18}
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MNow equations (A15)} and (AL1E) allow us to write:
Jur-z=npos + Byp-zSnp-z - (A1)

By recalling the definition of the source function (see eq. [Al]), we easily derive the numerical value of 5, _,, and
consequently that of Iy, _ , (see eq. [A15])
This procedure is iterated until 5, is computed.
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